
Online Passive-Aggressive Algorithms

Koby Crammer Ofer Dekel Shai Shalev-Shwartz Yoram Singer
School of Computer Science & Engineering

The Hebrew University, Jerusalem 91904, Israel
{kobics,oferd,shais,singer}@cs.huji.ac.il

Abstract

We present a unified view for online classification, regression, and uni-
class problems. This view leads to a single algorithmic framework for the
three problems. We prove worst case loss bounds for various algorithms
for both the realizable case and the non-realizable case. A conversion
of our main online algorithm to the setting of batch learning is also dis-
cussed. The end result is new algorithms and accompanying loss bounds
for the hinge-loss.

1 Introduction

In this paper we describe and analyze several learning tasks through the same algorithmic
prism. Specifically, we discuss online classification, online regression, and online uniclass
prediction. In all three settings we receive instances in a sequential manner. For concrete-
ness we assume that these instances are vectors in R

n and denote the instance received on
round t by xt. In the classification problem our goal is to find a mapping from the instance
space into the set of labels, {−1,+1}. In the regression problem the mapping is into R.
Our goal in the uniclass problem is to find a center-point in R

n with a small Euclidean
distance to all of the instances.

We first describe the classification and regression problems. For classification and regres-
sion we restrict ourselves to mappings based on a weight vector w ∈ R

n, namely the
mapping f : R

n → R takes the form f(x) = w · x. After receiving xt we extend a
prediction ŷt using f . For regression the prediction is simply ŷt = f(xt) while for classi-
fication ŷt = sign(f(xt)). After extending the prediction ŷt, we receive the true outcome
yt. We then suffer an instantaneous loss based on the discrepancy between yt and f(xt).
The goal of the online learning algorithm is to minimize the cumulative loss. The losses
we discuss in this paper depend on a pre-defined insensitivity parameter ε and are denoted
`ε(w; (x, y)). For regression the ε-insensitive loss is,

`ε(w; (x, y)) =

{

0 |y −w · x| ≤ ε
|y −w · x| − ε otherwise , (1)

while for classification the ε-insensitive loss is defined to be,

`ε(w; (x, y)) =

{

0 y(w · x) ≥ ε
ε− y(w · x) otherwise . (2)

As in other online algorithms the weight vector w is updated after receiving the feedback
yt. Therefore, we denote by wt the vector used for prediction on round t. We leave the
details on the form this update takes to later sections.

Problem Example (zt) Discrepancy (δ) Update Direction (vt)

Classification (xt, yt) ∈ R
n× {-1,+1} −yt(wt · xt) ytxt

Regression (xt, yt) ∈ R
n × R |yt −wt · xt| sign(yt −wt · xt) xt

Uniclass (xt, yt) ∈ R
n × {1} ‖xt −wt‖ xt−wt

‖xt−wt‖

Table 1: Summary of the settings and parameters employed by the additive PA algorithm
for classification, regression, and uniclass.

The setting for uniclass is slightly different as we only observe a sequence of instances.
The goal of the uniclass algorithm is to find a center-point w such that all instances xt fall
within a radius of ε from w. Since we employ the framework of online learning the vector
w is constructed incrementally. The vector wt therefore plays the role of the instantaneous
center and is adapted after observing each instance xt. If an example xt falls within a
Euclidean distance ε from wt then we suffer no loss. Otherwise, the loss is the distance
between xt and a ball of radius ε centered at wt. Formally, the uniclass loss is,

`ε(wt;xt) =

{

0 ‖xt −wt‖ ≤ ε
‖xt −wt‖ − ε otherwise . (3)

In the next sections we give additive and multiplicative online algorithms for the above
learning problems and prove respective online loss bounds. A common thread of our ap-
proach is a unified view of all three tasks which leads to a single algorithmic framework
with a common analysis.

Related work: Our work builds on numerous techniques from online learning. The up-
dates we derive are based on an optimization problem directly related to the one employed
by Support Vector Machines [15]. Li and Long [14] were among the first to suggest the idea
of converting a batch optimization problem into an online task. Our work borrows ideas
from the work of Warmuth and colleagues [11]. In particular, Gentile and Warmuth [6]
generalized and adapted techniques from [11] to the hinge loss which is closely related to
the losses defined in Eqs. (1)-(3). Kivinen et al. [10] discussed a general framework for
gradient-based online learning where some of their bounds bare similarities to the bounds
presented in this paper. Our work also generalizes and greatly improves online loss bounds
for classification given in [3]. Herbster [8] suggested an algorithm for classification and
regression that is equivalent to one of the algorithms given in this paper, however, the loss-
bound derived by Herbster is somewhat weaker. Finally, we would like to note that similar
algorithms have been devised in the convex optimization community (cf. [1, 2]). The main
difference between these algorithms and the online algorithms presented in this paper lies
in the analysis: while we derive worst case, finite horizon loss bounds, the optimization
community is mostly concerned with asymptotic convergence properties.

2 A Unified Loss

The three problems described in the previous section share common algebraic properties
which we explore in this section. The end result is a common algorithmic framework that is
applicable to all three problems and an accompanying analysis (Sec. 3). Let zt = (xt, yt)
denote the instance-target pair received on round t where in the case of uniclass we set
yt = 1 as a placeholder. For a given example zt, let δ(w; zt) denote the discrepancy of
w on zt: for classification we set the discrepancy to be −yt(wt · xt) (the negative of the
margin), for regression it is |yt −wt · xt|, and for uniclass ‖xt −wt‖. Fixing zt, we also

view δ(w; zt) as a convex function of w. Let [a]+ be the function that equals a whenever
a > 0 and otherwise equals zero. Using the discrepancies defined above, the three different
losses given in Eqs. (1)-(3) can all be written as `ε(w; z) = [δ(w; z) − ε]+, where for
classification we set ε← −ε since the discrepancy is defined as the negative of the margin.
While this construction might seem a bit odd for classification, it is very useful in unifying
the three problems. To conclude, the loss in all three problems can be derived by applying
the same hinge loss to different (problem dependent) discrepancies.

3 An Additive Algorithm for the Realizable Case

Equipped with the simple unified notion of loss we describe in this section a single online
algorithm that is applicable to all three problems. The algorithm and the analysis we present
in this section assume that there exist a weight vector w

? and an insensitivity parameter ε?

for which the data is perfectly realizable. Namely, we assume that `ε?(w?; zt) = 0 for all
t which implies that,

yt(w
? ·xt) ≥ |ε?| (Class.) |yt−w

? ·xt| ≤ ε? (Reg.) ‖xt−w
?‖ ≤ ε? (Unic.) . (4)

A modification of the algorithm for the unrealizable case is given in Sec. 5.

The general method we use for deriving our on-line update rule is to define the new weight
vector wt+1 as the solution to the following projection problem

wt+1 = argmin
w

1

2
‖w −wt‖2 s.t. `ε(w; zt) = 0 , (5)

namely, wt+1 is set to be the projection of wt onto the set of all weight vectors that attain
a loss of zero. We denote this set by C. For the case of classification, C is a half space,
C = {w : −ytw · xt ≤ ε}. For regression C is an ε-hyper-slab, C = {w : |w · xt −
yt| ≤ ε} and for uniclass it is a ball of radius ε centered at xt, C = {w : ‖w − xt‖ ≤
ε}. In Fig. 2 we illustrate the projection for the three cases. This optimization problem
attempts to keep wt+1 as close to wt as possible, while forcing wt+1 to achieve a zero
loss on the most recent example. The resulting algorithm is passive whenever the loss is
zero, that is, wt+1 = wt whenever `ε(wt; zt) = 0. In contrast, on rounds for which
`ε(wt; zt) > 0 we aggressively force wt+1 to satisfy the constraint `ε(wt+1; zt) = 0.

Parameter: Insensitivity: ε
Initialize: Set w1 = 0 (R&C) ; w1 = x0 (U)
For t = 1, 2, . . .

• Get a new instance: zt ∈ R
n

• Suffer loss: `ε(wt; zt)
• If `ε(wt; zt) > 0 :

1. Set vt (see Table 1)

2. Set τt = `ε(wt;zt)
‖vt‖2

3. Update: wt+1 = wt + τtvt

Figure 1: The additive PA algorithm.

Therefore we name the algorithm
passive-aggressive or PA for short. In
the following we show that for the
three problems described above the
solution to the optimization problem
in Eq. (5) yields the following update
rule,

wt+1 = wt + τtvt , (6)

where vt is minus the gradi-
ent of the discrepancy and
τt = `ε(wt; zt)/‖vt‖2. (Note
that although the discrepancy might
not be differentiable everywhere, its
gradient exists whenever the loss is
greater than zero). To see that the
update from Eq. (6) is the solution to the problem defined by Eq. (5), first note that the
equality constraint `ε(w; zt) = 0 is equivalent to the inequality constraint δ(w; zt) ≤ ε.
The Lagrangian of the optimization problem is

L(w, τ) =
1

2
‖w −wt‖2 + τ (δ(w; zt)− ε) , (7)

�
��

wt

wt+1

q �
��

wt

wt+1

q �
��

wt

wt+1

q

Figure 2: An illustration of the update: wt+1 is found by projecting the current vector
wt onto the set of vectors attaining a zero loss on zt. This set is a stripe in the case of
regression, a half-space for classification, and a ball for uniclass.

where τ ≥ 0 is a Lagrange multiplier. To find a saddle point of L we first differentiate L
with respect to w and use the fact that vt is minus the gradient of the discrepancy to get,

∇w(L) = w −wt + τ∇wδ = 0 ⇒ w = wt + τvt .

To find the value of τ we use the KKT conditions. Hence, whenever τ is positive (as in
the case of non-zero loss), the inequality constraint, δ(w; zt) ≤ ε, becomes an equality.
Simple algebraic manipulations yield that the value τ for which δ(w; zt) = ε for all three
problems is equal to, τt = `ε(w; zt)/‖vt‖2. A summary of the discrepancy functions and
their respective updates is given in Table 1. The pseudo-code of the additive algorithm for
all three settings is given in Fig. 1.

We now discuss the initialization of w1. For classification and regression a reasonable
choice for w1 is the zero vector. However, in the case of uniclass initializing w1 to be
the zero vector might incur large losses if, for instance, all the instances are located far
away from the origin. A more sensible choice for uniclass is to initialize w1 to be one of
the examples. For simplicity of the description we assume that we are provided with an
example x0 prior to the run of the algorithm and initialize w1 = x0.

To conclude this section we note that for all three cases the weight vector wt is a linear
combination of the instances. This representation enables us to employ kernels [15].

4 Analysis

The following theorem provides a unified loss bound for all three settings. After proving
the theorem we discuss a few of its implications.

Theorem 1 Let z1, z2, . . . , zt, . . . be a sequence of examples for one of the problems de-
scribed in Table 1. Assume that there exist w

? and ε? such that `ε?(w?; zt) = 0 for all
t. Then if the additive PA algorithm is run with ε ≥ ε?, the following bound holds for any
T ≥ 1

T
∑

t=1

(`ε(wt; zt))
2

+ 2(ε− ε?)

T
∑

t=1

`ε(wt; zt) ≤ B ‖w? −w1‖2 , (8)

where for classification and regression B is a bound on the squared norm of the instances
(∀t : B ≥ ‖xt‖22) and B = 1 for uniclass.

Proof: Define ∆t = ‖wt −w
?‖2 − ‖wt+1 −w

?‖2. We prove the theorem by bounding
∑T

t=1 ∆t from above and below. First note that
∑T

t=1 ∆t is a telescopic sum and therefore

T
∑

t=1

∆t = ‖w1 −w
?‖2 − ‖wT+1 −w

?‖2 ≤ ‖w1 −w
?‖2 . (9)

This provides an upper bound on
∑

t ∆t. In the following we prove the lower bound

∆t ≥
`ε(wt; zt)

B
(`ε(wt; zt) + 2(ε− ε?)) . (10)

First note that we do not modify wt if `ε(wt; zt) = 0. Therefore, this inequality trivially
holds when `ε(wt; zt) = 0 and thus we can restrict ourselves to rounds on which the
discrepancy is larger than ε, which implies that `ε(wt; zt) = δ(wt; zt)− ε. Let t be such a
round then by rewriting wt+1 as wt + τtvt we get,

∆t = ‖wt −w
?‖2 − ‖wt+1 −w

?‖2 = ‖wt −w
?‖2 − ‖wt + τtvt −w

?‖2

= ‖wt −w
?‖2 −

(

τ2
t ‖vt‖2 + 2τt(vt · (wt −w

?)) + ‖wt −w
?‖2

)

= −τ2
t ‖vt‖2 + 2τtvt · (w? −wt) . (11)

Using the fact that −vt is the gradient of the convex function δ(w; zt) at wt we have,

δ(w?; zt)− δ(wt; zt) ≥ (−vt) · (w? −wt) . (12)

Adding and subtracting ε from the left-hand side of Eq. (12) and rearranging we get,

vt · (w? −wt) ≥ δ(wt; zt)− ε + ε− δ(w?; zt) . (13)

Recall that δ(wt; zt)− ε = `ε(wt; zt) and that ε? ≥ δ(w?; zt). Therefore,

(δ(wt; zt)− ε) + (ε− δ(w?; zt)) ≥ `ε(wt; zt) + (ε− ε?) . (14)

Combining Eq. (11) with Eqs. (13-14) we get

∆t ≥ −τ2
t ‖vt‖2 + 2τt (`ε(wt; zt) + (ε− ε?))

= τt

(

−τt‖vt‖2 + 2`ε(wt; zt) + 2(ε− ε?)
)

. (15)

Plugging τt = `ε(wt; zt)/‖vt‖2 into Eq. (15) we get

∆t ≥
`ε(wt; zt)

‖vt‖2
(`ε(wt; zt) + 2(ε− ε?)) .

For uniclass ‖vt‖2 is always equal to 1 by construction and for classification and regression
we have ‖vt‖2 = ‖xt‖2 ≤ B which gives,

∆t ≥
`ε(wt; zt)

B
(`ε(wt; zt) + 2(ε− ε?)) .

Comparing the above lower bound with the upper bound in Eq. (9) we get

T
∑

t=1

(`ε(wt; zt))
2

+

T
∑

t=1

2(ε− ε?)`ε(wt; zt) ≤ B‖w? −w1‖2 .

This concludes the proof.

Let us now discuss the implications of Thm. 1. We first focus on the classification case. Due
to the realizability assumption, there exist w

? and ε? such that for all t, `ε?(w?; zt) = 0
which implies that yt(w

? ·xt) ≥ −ε?. Dividing w
? by its norm we can rewrite the latter as

yt(ŵ
? · xt) ≥ ε̂? where ŵ

? = w
?/‖w?‖ and ε̂? = |ε?|/‖w?‖. The parameter ε̂? is often

referred to as the margin of a unit-norm separating hyperplane. Now, setting ε = −1 we
get that `ε(w; z) = [1− y(w · x)]+ – the hinge loss for classification. We now use Thm. 1
to obtain two loss bounds for the hinge loss in a classification setting. First, note that by
also setting w

? = ŵ
?/ε̂? and thus ε? = −1 we get that the second term on the left hand

side of Eq. (8) vanishes as ε? = ε = −1 and thus,
T

∑

t=1

([1− yt(wt · xt)]+)
2 ≤ B ‖w?‖2 =

B

(ε̂?)2
. (17)

We thus have obtained a bound on the squared hinge loss. The same bound was also
derived by Herbster [8]. We can immediately use this bound to derive a mistake bound for
the PA algorithm. Note that the algorithm makes a prediction mistake iff yt(wt · xt) ≤ 0.
In this case, [1 − yt(wt · xt)]+ ≥ 1 and therefore the number of prediction mistakes is
bounded by B/(ε̂?)2. This bound is common to online algorithms for classification such
as ROMMA [14].

We can also manipulate the result of Thm. 1 to obtain a direct bound on the hinge loss.
Using again ε = −1 and omitting the first term in the left hand side of Eq. (8) we get,

2(−1− ε?)

T
∑

t=1

[1− yt(wt · xt)]+ ≤ B‖w?‖2 .

By setting w
? = 2ŵ?/ε̂?, which implies that ε? = −2, we can further simplify the above

to get a bound on the cumulative hinge loss,
T

∑

t=1

[1− yt(wt · xt)]+ ≤ 2
B

(ε̂?)2
.

To conclude this section, we would like to point out that the PA online algorithm can also
be used as a building block for a batch algorithm. Concretely, let S = {z1, . . . , zm} be a
fixed training set and let β ∈ R be a small positive number. We start with an initial weight
vector w1 and then invoke the PA algorithm as follows. We choose an example z ∈ S such
that `ε(w1; z)

2 > β and present z to the PA algorithm. We repeat this process and obtain
w2,w3, . . . until the T ’th iteration on which for all z ∈ S, `ε(wT ; z)2 ≤ β. The output of
the batch algorithm is wT . Due to the bound of Thm. 1, T is at most dB‖w?−w1‖2/βe and
by construction the loss of wT on any z ∈ S is at most

√
β. Moreover, in the following

lemma we show that the norm of wT cannot be too large. Since wT achieves a small
empirical loss and its norm is small, it can be shown using classical techniques (cf. [15])
that the loss of wT on unseen data is small as well.

Lemma 2 Under the same conditions of Thm. 1, the following bound holds for any T ≥ 1

‖wT −w1‖ ≤ 2 ‖w? −w1‖ .

Proof: First note that the inequality trivially holds for T = 1 and thus we focus on the
case T > 1. We use the definition of ∆t from the proof of Thm. 1. Eq. (10) implies that
∆t is non-negative for all t. Therefore, we get from Eq. (9) that

0 ≤
T−1
∑

t=1

∆t = ‖w1 −w
?‖2 − ‖wT −w

?‖2 . (18)

Rearranging the terms in Eq. (18) we get that ‖wT −w
?‖ ≤ ‖w? −w1‖. Finally, we use

the triangle inequality to get the bound,

‖wT −w1‖ = ‖(wT −w
?) + (w? −w1)‖

≤ ‖wT −w
?‖+ ‖w? −w1‖ ≤ 2 ‖w? −w1‖ .

This concludes the proof.

5 A Modification for the Unrealizable Case

We now briefly describe an algorithm for the unrealizable case. This algorithm applies only
to regression and classification problems. The case of uniclass is more involved and will
be discussed in detail elsewhere. The algorithm employs two parameters. The first is the
insensitivity parameter ε which defines the loss function as in the realizable case. However,
in this case we do not assume that there exists w

? that achieves zero loss over the sequence.
We instead measure the loss of the online algorithm relative to the loss of any vector w

?.
The second parameter, γ > 0, is a relaxation parameter. Before describing the effect of this
parameter we define the update step for the unrealizable case. As in the realizable case, the
algorithm is conservative. That is, if the loss on example zt is zero then wt+1 = wt. In
case the loss is positive the update rule is wt+1 = wt + τtvt where vt is the same as in the
realizable case. However, the scaling factor τt is modified and is set to,

τt =
`ε(wt; zt)

‖vt‖2 + γ
.

The following theorem provides a loss bound for the online algorithm relative to the loss
of any fixed weight vector w

?.

Theorem 3 Let z1 = (x1, y1), z2 = (x2, y2), . . . , zt = (xt, yt), . . . be a sequence of
classification or regression examples. Let w? be any vector in R

n. Then if the PA algorithm
for the unrealizable case is run with ε, and with γ > 0, the following bound holds for any
T ≥ 1 and a constant B satisfying B ≥ ‖xt‖2,

T
∑

t=1

(`ε(wt; zt))
2 ≤ (γ + B) ‖w? −w1‖2 +

(

1 +
B

γ

) T
∑

t=1

(`ε(w
?; zt))

2
. (19)

The proof of the theorem is based on a reduction to the realizable case (cf. [4, 13, 14]) and
is omitted due to the lack of space.

6 Extensions

There are numerous potential extensions to our approach. For instance, if all the compo-
nents of the instances are non-negative we can derive a multiplicative version of the PA
algorithm. The multiplicative PA algorithm maintains a weight vector wt ∈ P

n where
P

n = {x : x ∈ R
n
+,

∑n

j=1 xj = 1}. The multiplicative update of wt is,

wt+1,j = (1/Zt) wt,je
τtvt,j ,

where vt is the same as the one used in the additive algorithm (Table 1), τt now becomes
4`ε(wt; zt)/‖vt‖2

∞

for regression and classification and `ε(wt; zt)/(8‖vt‖2
∞

) for uniclass
and Zt =

∑n

j=1 wt,je
τtvt,j is a normalization factor. For the multiplicative PA we can

prove the following loss bound.

Theorem 4 Let z1, z2, . . . , zt = (xt, yt), . . . be a sequence of examples such that xt,j ≥ 0
for all t. Let DRE (w‖w′) =

∑

j wj log(wj/w
′
j) denote the relative entropy between w and

w
′. Assume that there exist w

? and ε? such that `ε?(w?; zt) = 0 for all t. Then when the
multiplicative version of the PA algorithm is run with ε > ε?, the following bound holds for
any T ≥ 1,

T
∑

t=1

(`ε(wt; zt))
2

+ 2(ε− ε?)
T

∑

t=1

`ε(wt; zt) ≤
1

2
B DRE (w?‖w1) ,

where for classification and regression B is a bound on the square of the infinity norm of
the instances (∀t : B ≥ ‖xt‖2

∞

) and B = 16 for uniclass.

The proof of the theorem is rather technical and uses the proof technique of Thm. 1 in
conjunction with inequalities on the logarithm of Zt (see for instance [7, 11, 9]).

An interesting question is whether the unified view of classification, regression, and
uniclass can be exported and used with other algorithms for classification such as
ROMMA [14] and ALMA [5]. Another, rather general direction for possible extension
surfaces when replacing the Euclidean distance between wt+1 and wt with other distances
and divergences such as the Bregman divergence. The resulting optimization problem may
be solved via Bregman projections. In this case it might be possible to derive general loss
bounds, see for example [12]. We are currently exploring generalizations of our framework
to other decision tasks such as distance-learning [16] and online convex programming [17].

References

[1] H. H. Bauschke and J. M. Borwein. On projection algorithms for solving convex
feasibility problems. SIAM Review, 1996.

[2] Y. Censor and S. A. Zenios. Parallel Optimization.. Oxford University Press, 1997.

[3] K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass prob-
lems. Jornal of Machine Learning Research, 3:951–991, 2003.

[4] Y. Freund and R. E. Schapire. Large margin classification using the perceptron algo-
rithm. Machine Learning, 37(3):277–296, 1999.

[5] C. Gentile. A new approximate maximal margin classification algorithm. Journal of
Machine Learning Research, 2:213–242, 2001.

[6] C. Gentile and M. Warmuth. Linear hinge loss and average margin. In NIPS’98.

[7] D. P. Helmbold, R. E. Schapire, Y. Singer, and M. K. Warmuth. A comparison of new
and old algorithms for a mixture estimation problem. In COLT’95.

[8] M. Herbster. Learning additive models online with fast evaluating kernels. In
COLT’01.

[9] J. Kivinen, D. P. Helmbold, and M. Warmuth. Relative loss bounds for single neurons.
IEEE Transactions on Neural Networks, 10(6):1291–1304, 1999.

[10] J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels. In
NIPS’02.

[11] J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for
linear predictors. Information and Computation, 132(1):1–64, January 1997.

[12] J. Kivinen and M. K. Warmuth. Relative loss bounds for multidimensional regression
problems. Journal of Machine Learning, 45(3):301–329, July 2001.

[13] N. Klasner and H. U. Simon. From noise-free to noise-tolerant and from on-line to
batch learning. In COLT’95.

[14] Y. Li and P. M. Long. The relaxed online maximum margin algorithm. Machine
Learning, 46(1–3):361–387, 2002.

[15] V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

[16] E. Xing, A. Y. Ng, M. Jordan, and S. Russel. Distance metric learning, with applica-
tion to clustering with side-information. In NIPS’03.

[17] M. Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In ICML’03.

