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Abstract 
We have constructed a second generation CPG chip capable of generating the necessary 
timing to control the leg of a walking machine. We demonstrate improvements over a 
previous chip by moving toward a significantly more versatile device. This includes a 
larger number of silicon neurons, more sophisticated neurons including voltage 
dependent charging and relative and absolute refractory periods, and enhanced 
programmability of neural networks. This chip builds on the basic results achieved on a 
previous chip and expands its versatility to get closer to a self-contained locomotion 
controller for walking robots. 
 
1 Introduction 
 

Legged locomotion is a system level behavior that engages most senses and 
activates most muscles in the human body. Understanding of biological systems is 
exceedingly difficult and usually defies any unifying analysis. Walking behavior is no 
exception. Theories of walking are likely incomplete, often in ways that are invisible to 
the scientist studying these behavior in animal or human systems. Biological systems 
often fill in gaps and details. One way of exposing our incomplete understanding is 
through the process of synthesis. In this paper we report on continued progress in 
building the basic elements of a motor pattern generator sufficient to control a legged 
robot. The focus of this paper is on a 2nd generation chip, that incorporates new features 
which we feel important for legged locomotion. 

An essential element of most locomotory systems is the Central Patter Generator 
(CPG). The CPG is a set of neural circuits found in the spinal cord, arranged to produce 
oscillatory periodic waveforms that activate muscles in a coordinated manner. They are 
neuron primitives that are used in most periodic biological systems such as the 
respiratory, the digestive and the locomotory systems. In this last one, CPGs are 
constructed using neurons coupled together to produce phasic relationships required to 
achieve coordinated gait-type movements. 

The CPG is more than a clock, or even a network of oscillators.  Phenomena 
such as reflex reversal [7] can only be understood in terms of a system that has at least 
one additional state variable over sensory information alone.  The CPG or similar circuits 
is certainly involved in modulation of sensory information from the periphery [5] and is 
of primary importance in providing phase information to the cerebellum. This 
information is necessary for coordination of the brain and the spinal cord [6]. 

Currently, there are two extremes in using CPGs for control of mechanical 
devices. The first is to be as faithful to the biological as possible, and then to discover 
how biological systems can assist in the control of complex machines. This approach is 
similar to that of Rasche et al. [1], based on the Hodgkin-Huxley model [3], and the one 



implemented by Simoni and DeWeerth [2], based on the Morris-Lecar model [4]. These 
ion-channel based models imply a very large parameter space, making it difficult to work 
with in silicon, yet inviting direct comparison with biological counterparts. 

Our approach is to start in the other direction. A system of minimal complexity 
was built [8,9] and then the question was asked of what additional features should be 
added to this minimal system to enable a behavior that is missing in the previous design. 
Thus, the two approaches start from different philosophical grounds, but will, hopefully, 
converge on similar solutions.  

The motivation behind choosing a self-contained silicon system rather than a 
software implementation is that the former will use less power and be more compact and 
more amenable to the control of a power-autonomous robot. 

Previously, a minimal system chip was built using integrate-and-fire neurons 
controlling a rudimentary robot [8, 9].  The chip described in this paper is an evolution of 
that one. Its main differences with its previous version are the following. The previous 
chip contained 2 spiking motoneurons and 2 pacemaker neurons, whereas the current 
chip contains 10 neurons of either type. More importantly, all the synapse weights (22 per 
neuron) are on-chip and can be used to make the synapse excitatory or inhibitory, while 
the previous version weighted the synapse signals outside the chip. The current chip also 
has 10 feedback synapses, making all the neurons interconnected. Moreover, the current 
chip has the capability of receiving and weighting up to 8 external inputs (instead of 2), 
such as sensory feedback signals, to allow better control of the CPG. The possibility of 
better tuning the pacemaker and spiking motoneurons created by the chip is achieved 
through direct modulation of the pulse width, of the absolute or relative refractory period 
and of the discharge strength of each neuron. Finally, the charging and discharging of the 
neurons’ membrane capacitance is an exponential function of time, as opposed to the 
linear function that the previous chip exhibited. This allows for better coupling between 
CPGs (unpublished observation). 

In this paper, after explaining the architecture of the chip and how simple 
networks can be created, a robotic application will be described. The paper will show that 
entrainment of multiple CPGs can be achieved by using direct coupling. Analysis and 
experiments demonstrating entrainment between multiple CPGs using direct coupling are 
presented. Finally, the oscillatory patterns used to control a single-legged robot are 
implemented in this chip. 

 
2 Architecture 
 

The CPG emulator chip was fabricated in silicon using a 0.5 µm CMOS process. 
The chip was designed to provide plausible electronic counterparts of biological 
elements, such as neurons, synapses, cell membranes, axons, and axon hillocks, for 
controlling motor systems. The chip also contains digital memories that can be used with 
synapses to modify weights or to modulate the membrane conductance. Through these 
components, it is possible to construct non-linear oscillators, which are based on the 
central pattern generators of biological organisms.  
The chip’s architecture can be seen in figure 1. It is made up of 10 fully interconnected 
“neurons” and 22 “synapses” per neuron. Communication with a particular 
neuron/synapse pair occurs through the address register, made up of the neuron/row 
register and the synapse/column register. Finally, a weight/data register allows a tunable 
amount of current to flow onto or away from the “neurons’ axons.” 

Figure 2 shows a detailed view of a single neuron. As can be seen, all neurons 
are integrate-and-fire type neurons, in which the current that flows on the axon charges  



 
up the membrane capacitor, Cmem. When the voltage across the capacitor reaches a certain 
threshold, Vthresh, the hysteretic comparator output goes high. The output of the  
comparator does not change if the discharge and refractory period controls are disabled. 
Normally, however, the discharge controller is active and its function is to decrease the 
voltage on the membrane capacitance until it drops below the hysteretic comparator’s 
lower threshold. The comparator output then goes low, the discharge is halted, and the 
capacitor can charge up again, thereby making the process start anew. 

The i-th neuron can be modeled through the following set of  equations: 
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where Ci

mem is the membrane capacitance of the i-th neuron, VT
+ and VT

- are respectively 
the high and low thresholds of the hysteretic comparator,  Vi

mem is the voltage on the 
capacitor, Si(t) is the state of the hysteretic comparator at time t, W+

ij is the excitatory 
weight on the j-th excitatory synapse of the i-th neuron and similarly W -

ik is the 
inhibitory weight on the k-th inhibitory synapse of the i-th neuron. The discharge and 
refractory currents, Idis and Irefrac correspond to the discharge and refractory period rates, 
respectively. 
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Figure 1. Top. Chip micrograph, 3.3x2.1 mm2. The 22 synapses per neuron (vertical 
lines) are distinguishable. Bottom. System block diagram. 



 
The speed with which the comparator changes state depends on the amount of 

current that the weight, or weights, sets on or remove from the “axon”. The weights are 
set through 8-bit digital-to-analog converters (DACs) and stored in static random access 
memory (SRAM) cells. A ninth bit selects the type of weight, either excitatory or 
inhibitory. Finally, the three blocks that depend on the comparator output, work as 
follows. A weight can be set on any one of these three blocks, just as was done for the 
synapses. This allows modulation of the discharge strength, of the refractory period, and 
of the pulse width. The refractory period control element prevents current from charging 
up the capacitor for as long as it is active. It can be both relative and absolute, depending 
on its weight. The pulse-width block allows independent control of the output duty cycle 
by modifying the amount of time the output is high. As can be seen in figure 2, the output 
from the PW control block is both the neuron output and the feedback signal to all the 
neurons, including itself (self-feedback). The chip is thus fully interconnected. 

From figure 2, four types of synapses can be identified. The first is the internal 
bias synapse, which allows current to flow onto or away from the membrane capacitor, 
depending on the type of bias it has, without requiring signals from inside the chip. The 
analog and digital synapses require the presence of an external analog or digital voltage 
to allow current to flow on the capacitor. The feedback synapses are also internal to the 
chip and allow the neurons to influence each other by modulating the charge-up of the 
membrane capacitors they are acting upon. This means that one of these synapses is of 
self-feedback for a particular neuron. These synapses are considered to be dual mode, in 
that they can both excite or inhibit. The 3 final synapses are used to control the discharge 
strength, the refractory period, and the pulse width. 

It is thus possible to attain two types of waveforms at each neuron output, 
depending on the current charging the capacitor. If the current charges up and discharges 
the capacitor very quickly, the output is similar to that of a motor neuron. If the current 
charges and discharges the capacitor slowly, then the output is that of a pacemaker 
envelope neuron, which makes up the CPG. 
 
3 Networks 
 

Two simple networks are described in this section using this chip to understand 
the how the chip operates. The first example is shown in figure 3. A pacemaker neuron  
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Figure 2. Block diagram of a single neuron. The neuron output is fed back to all the 
neurons including itself (Vout1 is also a feedback signal). 
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Figure 3. An envelope neuron exciting a motor neuron. The output waveforms are 180º 
out-of-phase. 
 

 
 
Figure 4. Master slave relationship. When the master spikes, the membrane potential 
increases for the duration of the spike. 
 
controls the spiking of a motor neuron such that the spiking only occurs if the envelope is 
high. This is done using the internal biasing synapse to charge up the membrane 
capacitance of the envelope neuron and the feedback synapse coming from the envelope 
neuron to charge up the capacitor of the motor neuron. Similarly, the envelope neuron 
can inhibit the spiking which would otherwise occur at a constant rate through the bias 
synapse. Note that the bias synapse can either be the internally generated, as the one 
shown in figure 3, or it can be the one of the external analog or digital synapse seen in 
figure 2.  

A second example, shown in figure 4, depicts the effects of a single spike on an 
envelope neuron. Depending on where the spike occurs with respect to the slave envelope 
neuron, it will either accelerate the charge-up or decelerate the discharge. In this example, 
the spike occurred during the membrane potential’s discharge phase. The membrane 
potential’s output voltage is shown within the slave output waveform. The two horizontal 
lines that delimit it represent the hysteretic comparator’s threshold voltages. Thus, the 
slave stays high for a longer period of time, thus decreasing its normal frequency of 
oscillation. It is therefore possible to entrain the slave oscillator to the frequency of the 
master. This can be done either by increasing the duration of the master spike, increasing  
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Figure 5. CPG entrainment. 
 

 
Figure 6. Phase delay between master envelope and spike entrainer.  
 
the feedback weight with which the master controls the slave, or simply by increasing the 
spike frequency. For example, in this latter case, if the master frequency is higher than 
the slave’s, then the spike will accelerate the slave such that it reaches the same period. 
 
4 Analysis of pulse coupling 

 
To show that it is possible to entrain two oscillators to have the same frequency 

but alter the phase at will, such that any phase between the two waveforms can be 
achieved, it is necessary to use a configuration similar to the one described in the 
previous section. A master and slave oscillator with different frequencies and both with 
approximately 50% duty cycle are set up as shown in figure 5. Another neuron is used to 
generate a single spike during the master’s pulse width called the entrainer spike. It is 
evoked by the input from the master and has the same frequency, but its phase depends 
on the strength of the feedback synapse between these two cells. The spike’s discharge 
occurs very slowly, but to ensure that no residual charge is left on the capacitor, a fourth 
neuron, 180º out-of-phase with the master, is used. When this neuron is high, it sends a 
strong inhibition signal to the spike, thereby resetting it. At this point, the spike can be 
used for synchronizing the slave oscillator. As described previously, if the slave 
oscillator’s frequency is lower than the master’s (and therefore that of the spike’s), the 
spike’s effect is to accelerate until the two are synchronized. This allows for two 
pacemaker neurons to be out-of-phase by an arbitrary angle. This is shown in figure 6, 
where the coupling weight between master and slave was systematically altered and the 
resulting phase variation was recorded. To fine tune the slave oscillator’s desired phase 
difference, once the spike master has been set, it is necessary to tune the feedback 
strength between the spike and the slave oscillator. A stronger feedback will allow the  
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Figure 7. Map function illustrating the coupling behavior between two neurons.  
 

two signals to happen virtually at the same time, a weaker weight will cause 
some delay between the two. Lewis and Bekey show that adaptation of time is critical to 
controlling walking in a robot [10]. 

Finally, figure 7 shows a map function obtained using a 4.4 ms spike pulse 
width. A map function depicts the effect of a spike on a pacemaker neuron at all possible 
phases. The curve shows a slope smaller 1 (in absolute value) in the transition region, 
which implies that the system is asymptotically stable [9]. 

 
5        Experiment 
 

To build on all the results achieved, the oscillatory patterns necessary to control 
a single-legged robot were synthesized. Figure 7 shows the waveforms generated to 
control a hip’s flexor and extensor muscles and ipsilateral knee’s flexor and extensor. 
These waveforms were generated using all 10 available neurons with the procedures 
described previously. The hip flexor and extensor are 180º out-of-phase to each other. 
The left knee extensor is slightly out-of-phase with its respective hip muscle but the 
width of the waveform’s pulse is shorter than that of the hip extensor. As can be seen, the 
knee flexor has two bumps, where the purpose of the first bump is to stabilize the knee 
when the foot hits the substrate. The waveforms depicted are necessary to drive a robotic 
leg with a standard walking gait. Different gaits will have waveforms with different phase 
relationships. However, the results shown in the previous sections show that these 
waveforms, through simple variations of the timing parameters described, can be 
generated with ease. 
 
6 Conclusions 
 

The waveforms needed to control a robotic leg can be generated using a silicon 
chip described in this paper. The phase differences between the waveforms, however, 
change depending on the type of gait that one wants to implement in a robot. The results 
obtained show that any phase difference between two or more waveforms can be 
achieved, thus making any gait effectively achievable. Furthermore, the map function that 



resulted from on-chip measurements showed that the chip has the capability of 
asymptotic coupling stability. 

 

 
Figure 8. Waveforms generated to control a robotic leg. 
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