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Abstract

Consider a number of moving points, where each point is attached
to a joint of the human body and projected onto an image plane.
Johannson showed that humans can effortlessly detect and recog-
nize the presence of other humans from such displays. This is true
even when some of the body points are missing (e.g. because of
occlusion) and unrelated clutter points are added to the display.
We are interested in replicating this ability in a machine. To this
end, we present a labelling and detection scheme in a probabilistic
framework. Our method is based on representing the joint prob-
ability density of positions and velocities of body points with a
graphical model, and using Loopy Belief Propagation to calculate
a likely interpretation of the scene. Furthermore, we introduce a
global variable representing the body’s centroid. Experiments on
one motion-captured sequence suggest that our scheme improves on
the accuracy of a previous approach based on triangulated graph-
ical models, especially when very few parts are visible. The im-
provement is due both to the more general graph structure we use
and, more significantly, to the introduction of the centroid variable.

1 Introduction

Perceiving and analyzing human motion is a natural and useful task for our visual
system. Replicating this ability in machines is one of the most important and diffi-
cult goals of machine vision. As Johannson experiments show [4], the instantaneous
information on the position and velocity of a few features, such as the joints of the
body, present sufficient information to detect human presence and understand the
gist of human activity. This is true even if clutter features are detected in the scene,



and if some body parts features are occluded (generalized Johansson display). Se-
lecting features in a frame, as well as computing their velocity across frames, is
a task for which good quality solutions exist in the literature [5] and we will not
consider it here.

We therefore assume that a number of features that are associated to the body
have been detected and their velocity has been computed. We will not assume that
all such features have been found, nor that all the features that were detected are
associated to the body. We study the interpretation of such a generalized Johannson
display, i.e. the detection of the presence of a human in the scene and the labelling
of the point features as parts of the body or as clutter. We generalize an approach
presented in [3] where the pattern of point positions and velocities associated to
human motion was modelled with a triangulated graphical model. We are interested
here in exploring the benefit of allowing long-range connections, and therefore loops
in the graph representing correlations between cliques of variables. Furthermore,
while [3] obtained translation invariance at the level of individual cliques, we study
the possibility of obtaining translation invariance globally by introducing a variable
representing the ensemble model of the body. Algorithms based on loopy belief
propagation (LBP) are applied to efficiently compute high-likelihood interpretations
of the scene, and therefore detection and labelling.

1.1 Notations

We use bold-face letters x for random vectors and italic letters x for their sample
values. The probability density (or mass) function for a variable x is denoted by
fx(x). When x is a random quantity we write the expectation as Efx [x]. An ordered
set I = [i1 . . . iK ] used as a vector’s subscript has the obvious meaning of yI =
[yi1 . . .yiK

] or, when enclosed in squared brackets [I]s applied to a dimension of a
matrix V = [vij ], it selects the s-dimensional members (specified by the subscript)
of the matrix along that dimension, i.e. V[1:2]4[1:2]4 is the 8× 8 matrix obtained by
selecting the first two 4-dimensional rows and columns.

1.2 Problem Definition

We identify M = 16 relevant body parts (intuitively corresponding to the main
joints). Each marked point on a display (referred to as a detection or observation) is
denoted by yi ∈ R4 and is endowed with four values, i.e. yi = [yi,a, yi,b, yi,va , yi,vb

]T
corresponding to its horizontal and vertical positions and velocities. Our goal here
is to find the most probable assignment of a subset of detections to the body parts.
For each display we call y = [yT

1 . . . yT
N ]T the 4N × 1 vector of all observations (on

a frame) and we model each single observation as a 4 × 1 random vector yi. In
general N ≥ M however some or all of the M parts might not be present in a given
display. The binary random variable δi indicates whether the ith part has been
detected or not (i ∈ {1 . . . M}) . For i ∈ {1 . . . M}, a discrete random variable λi

taking values on {1 . . . N} is used to further specify the correspondence of a body
part i to a particular detection λi. Since this makes sense only if the body part is
detected, we assume by convention that λi = 0 if δi = 0. A pair h = [λ, δ] is called
a labelling hypothesis.

Any particular labelling hypothesis determines a partition of the set of indices cor-
responding to detections into foreground and background: [1 . . . N ]T = F∪B, where
F = [λi : δi = 1, i = 1 . . .M ]T and B = [1 . . . N ]T \ F . We say that m = |F| parts
have been detected and M −m are missing. Based on the partition induced on λ
by δ, we can define two vectors λf = λF and λb = λB, each identifying the detec-
tions that were assigned to the foreground and those assigned to the background



respectively. Finally, the set of detections y remains partitioned into the vectors
yλf and yλb of the foreground and background detections respectively.

The foreground and background detections are assumed to be (conditionally) inde-
pendent (given h) meaning that their joint distribution factorizes as follows

fy|λδ(y|λδ) = fyλf |λδ(yλf |λδ) · fyλb |λδ(yλb |λδ)

where fyλf |λδ(yλf |λδ) is a gaussian pdf, while fyλb |λδ(yλb |λδ) is the uniform pdf
UN−m(A), with A determining the area of the position and velocity hyperplane for
each of the N −m background parts.

More specifically, when all M parts are observed (δ = [1 . . . 1]T ) we have that
fyλ[1:M]1

|λδ(yλ[1:M]1
|λδ) is N (µ, Σ). When m ≤ M instead, N (µf ,Σf ) is the

marginalized (over the M − m missing parts) version N (µf ,Σf ) of the complete
model N (µ, Σ).

Our goal is to find an hypothesis ĥ = [λ̂, δ̂] such that

[λ̂, δ̂] = arg max
λδ

{Q(λ, δ)} = arg max
λδ

{fyλ|λδ(yλ|λ, δ)}. (1)

2 Learning the Model’s Parameters and Structure

In this section we will assume some familiarity with the connections between prob-
ability density functions and graphical models. Let us initially assume that the
moving human being we want to detect is centrally positioned in the frame. We
will then enhance the model in order to accommodate for horizontal and vertical
translations.

In the learning process we want to estimate the parameters of fyλf |λδ(yλf |λδ),
where the labeling of the training set is known, N = M (no clutter is present) and
δ = [1 . . . 1]T (all parts are visible). A fully connected graphical model would be the
most accurate description of the training set, however, the search for the optimal
labelling, given a display, would be computationally infeasible. Additionally, by
Occam’s razor, such model might not generalize as well as a simpler one. It is
intuitive to think that some (conditional) independencies between the yi’s hold.
We learn the model structure from the data, as well as the parameters. To limit the
computational cost and to hope in a better generalizing model, we put an upper
bound on the fan-in (number of incoming edges) of the nodes.

In order to make the trade-off between complexity and likelihood explicit, we adopt
the BIC (Bayesian Information Criterion) score. We recall that the BIC score is
consistent, and that since the probability distribution factorizes family-wise, the
score decomposes additively. An exhaustive search among graphs is infeasible. We
therefore attempt to determine the highest scoring graph by mean of a greedy hill-
climbing algorithm, with random restarts. Specifically, at each step the algorithm
chooses the elementary operation (among adding, removing or inverting an edge of
the graph) that results in the highest increase for the score. To prevent getting
stuck in local maxima, we randomly restart a number of times once we cannot get
any score improvements, and then we pick the graph achieving the highest score
overall. We finally obtain our model by retaining the associated maximum likelihood
parameters.

As opposed to previous approaches [3], no decomposability of the graph is imposed,
and exact belief propagation methods that pass through the construction of a junc-



tion tree are not applicable. When the junction property is satisfied, the maximum
spanning tree algorithm allows an efficient construction of the junction tree. The
tree with the most populated separators between cliques is produced in linear time.
Here, we propose instead a construction of the junction graph that (greedily) at-
tempts to minimize the complexity of the induced subgraph associated with each
variable.

Figure 1: Graphical Models. Light shaded vertices represent variables associated
to different body parts, edges indicate conditional (in)dependencies, following the
standard Graphical Models conventions. [Left] Hand made decomposable graph
from [3], used for comparison. [Right] Model learned from data (sequence W1, see
section 4), with max fan-in constrain of 2.

3 Detection and Labelling with Expectation Maximization

One could solve the maximization problem (1) by means of Belief Propagation
(BP), however, we require our system to be invariant with respect to translations
in the first two coordinates (position) of the observations. To achieve this we in-
troduce a new parameter γ = [γa, γb, 0, 0]T that represents the reference system’s
origin, which we now allow to be different than zero. By introducing the centered
observations ȳλ = yλ − γ our model becomes

fȳλ|γh(ȳ|γh) = fȳ
λf |γλδ(ȳλf |γλδ) · fȳ

λb |λδ(ȳλb |λδ).

where in the second member the first factor is now N (µ̄f , Σ̄f ) while the second
factor remains UN−m(Ā).

We finally use an EM-like procedure to estimate γ obtaining, as a by-product, the
maximizing hypothesis h we are after.

3.1 E-Step

As the hypothesis h is unobservable we replace the complete-data log-likelihood,
with its expected value

L̂c(f̃ , h) = Ef̃h
[log fȳλ|γ(ȳλ|γ)] (2)

where the expectation is taken with respect to a generic distribution f̃h(h). It’s
known that the E-step maximizing solution is f̃

(k)
h (h) ∝ fȳλ|γ(ȳλ|γ(k−1)). Since we

will not be able to compute such distribution for all the assignments h of h, we will



make a so-called hard assignment i.e. we will approximate fȳλ|γ(ȳλ|γ(k−1)) with
1(h− h(k)), where

h(k) = arg max
h

{fȳλ|γ(ȳλ|γ(k−1))}.

Given the current estimate γ(k−1) of γ, the hypothesis h(k) can be determined by
maximizing the (discrete) potential Π(h) = log fȳ

λf |γh(ȳλf |γ(k−1)h) · fy
λb |h(yλb |h)

with a Max-Sum Loopy Belief Propagation (LBP) on the associated junction graph.
The potential above decomposes into a number of factors (or cliques). With the
exception of root nodes, each family gives rise to a factor that we initialize to the
family’s conditional probability mass function (pmf). For a root node, its marginal
pmf is multiplied into one of its children.

If LBP converges and the determined h(k) maximizes the expected log-likelihood
L̂c(f̃ (k), h(k−1)), then we are guaranteed (otherwise there is just reasonable1 hope)
that EM will converge to the sought-after ML estimate of γ.

3.2 M-Step

In the M-Step we maximize (2) with respect to γ, holding h = h(k), i.e. we compute

γ(k+1) = arg max
γ

{log fȳλ|γ(ȳλ(k) |γ)} (3)

The maximizing γ can be obtained from
0 = ∇γ [(yλ − µ̄− Jγ)T Σ̄−1(yλ − µ̄− Jγ)] (4)

where J4 = diag(1, 1, 0, 0) and J = [ J4 J4 · · · J4︸ ︷︷ ︸]
T

m

.

The solution involves the inversion of the matrix Σ̄ as a whole which is numerically
instable given the minimal variance in the vertical component of the motion. We
therefore approximate it with a block-diagonal version Σ̃ with

Σ̃[i]4[i]4 = I4

det(Σ̄[i]4[i]4)
det(Σ̄)

. (5)

It’s easy to see that, for appropriate αi’s,

γ(k+1) = J4

∑

δi=1

[αi(yλi − µ̄i)] . (6)

3.3 Detection Criteria

Let σ be a (discrete) indicator random variable for the event that the Johansson’s
display represents a scene with a human body. So far, in our discussion we have
implicitly assumed that σ = 1. In the following section we will describe a way for
determining whether a human body is actually present (detection). By defining
R(y) = fσ|y(1|y)

fσ|y(0|y) , we claim that a human body is present whenever R(y) > 1. By
Bayes rule, R(y) can be rewritten as

R(y) =
fy|σ(y|1)
fy|σ(y|0)

· fσ(1)
fσ(0)

=
fy|σ(y|1)
fy|σ(y|0)

·Rp

1Experimentally it is observed that when LBP converges, the determined maximum is
either global or, although local, the potential’s value is very close to its global optimum.
If the potential is increased (not necessarily maximized) by LBP, that suffices for EM to
converge



where Rp = P [σ=1]
P [σ=0] is the contribution to R(y) due to the prior on σ. In order to

compute the R(y) we marginalize over the labelling hypothesis h.

When σ = 0, the only admissible hypotheses must have δ = 0T (no body parts
are present) which translates into fδ|σ(δ|σ) = P [δ = δ|σ = 0] = 1k(δ − 0T ). Also,
fλ|δσ(λ|δ1) = N−N as no labelling is more likely than any other, before we have
seen the detections. All N detections are labelled by λ as background and their
conditional density is UN (A). Therefore, we have fy|σ(y|0) = 1

AN
1

NN where the
summation is over the λ, δ compatible with σ = 0.

When σ = 1, we have fδ|σ(δ|1) = P [δ = δ] = 2−M as we assume that each body
part appears (or not) in a given display with probability 1

2 , independently of all
other parts. Also, fλ|δσ(λ|δ1) = N−N as before and therefore we can write

fy|σ(y|1) =
∑

λ,δ

[
fy|λδσ(y|λδ1)

] 1
NN

1
2M

where the summation is over the λ, δ compatible with σ = 1. We conclude that

R(y) = Rp

fy|σ(y|1)
fy|σ(y|0)

= Rp
AN

2M

∑

λ,δ

[
fy|λδσ(y|λδ1)

]

When implementing Loopy Belief Propagation, on a finite-precision computational
architecture using Gaussian models, we are unable to perform marginalization as we
can only represent log-probabilities. However, we will assume that the ML labelling
ĥσ is predominant over all other labelling, so that in the estimate of σ we can
approximate marginalization with maximization and therefore write

R(y) ≈ Rp
AN

2M
fy|λδσ(y|λ̂δ̂1)

where λ̂, δ̂ is the maximizing hypothesis when σ = 1.

4 Experimental Results

In our experiment we use two sequences W1 and W22 of about 7,000 frames each,
representing a human subject walking back and forth along a straight line. Both
sequences were acquired and labelled with a motion capture system. Each pair
of consecutive frames is used to produce a Johannson display with positions and
velocities. W1 is used to learn the probabilistic model’s parameter and structure.
A 700 frames random sample from W2 is then used to test of our algorithm.

We evaluate the performance of our technique and compare it with the hand-made,
decomposable graphical model of [3]. There, translation invariance is achieved by
using relative positions within each clique. We refer to it as to the local version of
translation invariance (as opposed to the global version proposed in this paper).

We first explore the benefits of just relaxing the decomposability constrain, still
implementing the translation invariance locally. The lower two dashed curves of
Figure 2 already show a noticeable improvement, especially when fewer body parts
are visible. However, the biggest increase in performance is brought by global
translation invariance as it is evident from the upper two curves of Figure 2.

2available at http://www.vision.caltech.edu/fanti.
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Figure 2: Detection and Labeling Performance. [Left] Labeling: On each display
from the sequence W2, we randomly occlude between 3 and 10 parts and superim-
pose 30 randomly positioned clutter points. For any given number of visible parts,
the four curves represent the percentage of correctly labeled parts out of the total
labels in all 700 displays of W2. Each curve reflects a combination of either Local
or Global translation invariance and Decomposable or Loopy graph. [Right] Detec-
tion: For the same four combinations we plot Pdetection (Prob. of detecting a person
when the display shows one) for a fixed Pfalse−alarm = 10% (probability of stating
that a person is present when only 30 points of clutters are presented). Again, we
vary the number of visible points between 4, 7 and 11.

As for the dynamical programming algorithm of [3], the Loopy Belief Propagation
algorithm runs in O(MN3), however 4 or 5 more iterations are needed for it to
converge. Furthermore, to avoid local maxima, we restart the algorithm at most
10 times using a randomly generated schedule to pass the messages. Finally, when
global invariance is used, we re-initialize γ up to 10 times. Each time we randomly
pick a value within a different region of the display. On average, about 5 restarts
for γ, 5 different scheduling and 3 iterations of EM suffice to achieve a labeling with
a likelihood comparable with the one of the ground truth labeling.

5 Discussion, Conclusions and Future Work

Generalizing our model from decomposable [3] to loopy produced a gain in perfor-
mance. Further improvement would be expected when allowing larger cliques in the
junction graph, at a considerable computational cost. A more sensible improvement
was obtained by adding a global variable modeling the centroid of the figure.

Taking [3] as a reference, there is about a 10x increase in computational cost when
we either allow a loopy graph or account for translations with the centroid. When
both enhancement are present the cost increase is between 100x and 1,000x.

We believe that the combination of these two techniques points in the right direction.
The local translation invariance model required the computation of relative positions
within the same clique. These could not be computed in the majority of cliques
when a large number of body parts were occluded, even with the more accurate
loopy graphical model. Moreover, the introduction of the centroid variable is also
valuable in light of a possible extension of the algorithm to multi-frame tracking.

We should also note that the structure learning technique is sub-optimal due to



the greediness of the algorithm. In addition, the model parameters and structure
are estimated under the hypothesis of no occlusion or clutter. An algorithm that
considers these two phenomena in the learning phase could likely achieve better
results in realistic situations, when clutter and occlusion are significant.

Finally, the step towards using displays directly obtained from gray-level image
sequences remains a challenge that will be the goal of future work.
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