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Abstract

Significant progress in clustering has been achieved by algorithms that
are based on pairwise affinities between the datapoints. In particular,
spectral clustering methods have the advantage of being able to divide
arbitrarily shaped clusters and are based on efficient eigenvector calcu-
lations. However, spectral methods lack a straightforward probabilistic
interpretation which makes it difficult to automatically set parameters us-
ing training data.

In this paper we use the previously proposed typical cut framework for
pairwise clustering. We show an equivalence between calculating the
typical cut and inference in an undirected graphical model. We show that
for clustering problems with hundreds of datapoints exact inference may
still be possible. For more complicated datasets, we show that loopy be-
lief propagation (BP) and generalized belief propagation (GBP) can give
excellent results on challenging clustering problems. We also use graph-
ical models to derive a learning algorithm for affinity matrices based on
labeled data.

1 Introduction

Consider the set of points shown in figure 1a. Datasets of this type, where the two clus-
ters are not easily described by a parametric model can be successfully clustered using
pairwise clustering algorithms [4, 6, 3]. These algorithms start by building a graph whose
vertices correspond to datapoints and edges exist between nearby points with a weight that
decreases with distance. Clustering the points is then equivalent to graph partitioning.



a b

Figure 1: Clustering as graph parti-
tioning (following [8]). Vertices corre-
spond to datapoints and edges between
adjacent pixels are weighted by the dis-
tance. A single isolated datapoint is
marked by an arrow

How would we define a good partitioning? One option is the minimal cut criterion. Define:

cut(A,B) =
∑

i∈A,j∈B

W (i, j) (1)

where W (i, j) is the strength of the weight between node i and j in the graph. The minimal
cut criterion finds clusterings that minimize cut(A,B).

The advantage of using the minimal cut criterion is that the optimal segmentation can be
computed in polynomial time. A disadvantage, pointed out by Shi and Malik [8], is that
it will often produce trivial segmentations. Since the cut value grows linearly with the
number of edges cut, a single datapoint cut from its neighbors will often have a lower cut
value than the desired clustering (e.g, the minimal cut solution separates the full dot in fig1,
instead of the desired ‘N’ and ‘I’ clusters).

In order to avoid these trivial clusterings, several graph partitioning criteria have been pro-
posed. Shi and Malik suggested the normalized cut criterion which directly penalizes par-
titions where one of the groups is small, hence a separation of a single isolated datapoint
is not favored. Minimization of the normalized cut criterion is NP-Complete but it can be
approximated using spectral methods.

Despite the success of spectral methods in a wide range of clustering problems, several
problems remain. Perhaps the most important one is the lack of a straightforward proba-
bilistic interpretation. However, interesting progress in this direction has be made by Meila
and Shi [4] who showed a relation between the top eigenvectors and the equilibrium distri-
bution of a random walk on the graph.

The typical cut criterion, suggested by Blatt et al [1] and later by Gdalyahu et al [2], is
based on a simple probabilistic model. Blatt et al first defines a probability distribution
over possible partitions by:

Pr(A,B) =
1

Z
e−cut(A,B)/T (2)

where Z is a normalizing constant, and the “temperature” T serves as a free parameter.

Using this probability distribution, the most probable partition is simply the minimal cut.
Thus performing MAP inference under this probability distribution will still lead to trivial
segmentations. However, as Blatt et al pointed out, there is far more information in the
full probability distribution over partitions than solely in the MAP partition. For example,
consider the pairwise correlation p(i, j) defined for any two neighboring nodes in the graph
as the probability that they belong to the same segment:

p(i, j) =
∑

A,B

Pr(A,B)SAME(i, j;A,B) (3)

with SAME(i, j;A,B) defined as 1 iff i ∈ A and j ∈ A or i ∈ B and j ∈ B.
Referring again, to the single isolated datapoint in figure 1, then while that datapoint and its
neighbors do not appear in the same cluster in the most probable partition, they do appear
in the same cluster for the vast majority of partitions. Thus we would expect p(i, j) > 1/2
for that datapoint and its neighbors.



Hence the typical cut algorithm of Blatt et al consists of three stages:

• Preprocessing: Construct the affinity matrix W so that each node will be con-
nected to at most K neighbors. Define the affinities W (i, j) as: W (i, j) =

e
−d(i,j)2

σ2 , where di,j is the distance between points i and j, and σ is the mean
distance to the K’th neighbor.

• Estimating pairwise correlations: Use a Markov chain Monte-Carlo (MCMC)
sampling method to estimate p(i, j) at each temperature T .

• Postprocessing: Define the typical cut partition as the connected components of
the graph after removing any links for which p(i, j) < 1/2.

For a given W (i, j) the algorithm has a single free temperature parameter T (see eq. 5).
This parameter implicitly defines the number of clusters. At zero temperature all the data-
points reside in one cluster (this trivially minimizes the cut value), and at high temperatures
every datapoint forms a separate cluster.

In this paper we show that calculating the typical cut is equivalent to performing inference
in an undirected graphical model. We use this equivalence to show that in problems with
hundreds of datapoints, the typical cut may be calculated exactly. We show that when exact
inference is impossible, loopy belief propagation (BP) and generalized belief propagation
(GBP) may give an excellent approximation with very little computational cost. Finally,
we use the standard algorithm for ML estimation in graphical models to derive a learning
algorithm for affinity matrices based on labeled data 1.

2 The connection between typical cuts and graphical models

An undirected graphical model with pairwise potentials (see [10] for a review) consists of
a graph G and potential functions Ψij(xi, xj) such that the probability of an assignment x
is given by:

Pr(x) =
1

Z

∏

<ij>

Ψij(xi, xj) (4)

where the product is taken over nodes that are connected in the graph G.

To connect this to typical cuts we first define for every partition (A,B) a binary vector x
such that x(i) = 0 if i ∈ A and x(i) = 1 if i ∈ B. We then define:

Ψij(xi, xj) =

(

1 e−W (i,j)/T

e−W (i,j)/T 1

)

(5)

Observation 1: The typical cut probability distribution (equation 2) is equivalent to that
induced by a pairwise undirected graphical model (equation 4) whose graph G is the same
as the graph used for graph partitioning and whose potentials are given by equation 5.

So far we have focused on partitioning the graph into two segments, but the equiva-
lence holds for any number of segments q. Let (A1, A2, · · · , Aq) be a partitioning of the
graph into q segments (note that these segments need not be connected in G). Define
cut(A1, A2, · · ·Aq) in direct analogy to equation 1, and:

Pr((A1, A2, · · · , Aq) =
1

Z
e−

1
T

cut(A1,A2,···,Aq) (6)

The implication of observation 1 is that we can use the powerful tools of graphical models
in the context of pairwise clustering. In subsequent sections we provide examples of the
benefits of using graphical models to compute typical cuts.

1Parts of this work appeared previously in [7].



3 Computing typical cuts using inference in a graphical model

Typical cuts has been successfully used for clustering of datapoints in Rn [1] using an
expensive MCMC to calculate pairwise correlations, p(i, j). Using inference algorithms
we provide a deterministic and more efficient estimate of p(i, j). More specifically, we use
inference algorithms to compute the pairwise beliefs over neighboring nodes bij(xi, xj),
and calculate the pairwise correlation as p(i, j) =

∑q
t=1 bij(t, t).

In cases where the maximal clique size is small enough, we can calculate p(i, j) exactly
using the junction tree algorithm. In all other cases we must resort to approximate infer-
ence using the BP and the GBP algorithms. The following subsections discuss exact and
approximate inference for computing typical cuts.

3.1 Exact inference for typical cut clustering

The nature of real life clustering problems seems to suggest that exact inference would be
intractable due to the clique size of the junction tree. Surprisingly, in our empirical stud-
ies, we discovered that on many datasets, including benchmark problems from the UCI
repository, we obtain “thin” junction trees (with maximal clique size less than 20). Fig-
ure 2a shows a two dimensional representative result. The temperature parameter T was
automatically chosen to provide two large clusters. As shown previously by Gdalyahu et al
the typical cut criterion does sensible things: it does not favor segmentation of individual
datapoints (as in minimal cut), nor is it fooled by narrow bridges between clusters (as in
simple connected components). However, while previous typical cut algorithms approxi-
mate p(i, j) using MCMC, in some cases using the framework of graphical model we can
calculate p(i, j) exactly and efficiently.
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Figure 2: Clustering ex-
amples with clusters indi-
cated by different markers.
In example (a) the pair-
wise correlations were cal-
culated exactly, while in ex-
ample (b) we used BP.

3.2 Approximate inference for typical cut clustering

Although exact inference is shown to be possible, in the more common case it is infeasible,
and p(i, j) can only be estimated using approximate inference algorithms. In this section
we discuss approximate inference using the BP and the GBP algorithms.

Approximate inference using Belief Propagation In BP the pairwise beliefs over neigh-
boring nodes, bij , are defined using the messages as:

bij(xi, xj) = αΨij(xi, xj)
∏

xk∈N(xi)\xj

mki(xi)
∏

xk∈N(xj)\xi

mkj(xj) (7)

Can this be used as an approximation for pairwise clustering?



Observation 2: In case where the messages are initialized uniformly the pairwise beliefs
calculated by BP are only a function of the local potentials, i.e bij(xi, xj) ∝ ψij(xi, xj).

Proof: Due to the symmetry of the potentials and since the messages are initialized uni-
formly, all the messages in BP remain uniform. Thus equation 7 will simply give the
normalized local potentials.

A consequence of observation 2 is that we need to break the symmetry of the problem in
order to use BP. We use here the method of conditioning. Due to the symmetry of the
potentials, if exact inference is used then conditioning on a single node xc = 1 and cal-
culating conditional correlations P (xi = xj |xc = 1) should give exactly the same answer
as the unconditional correlations p(i, j) = P (xi = xj). However, when BP inference
is used, clamping the value of xc causes its outgoing messages to be nonuniform, and as
these messages propagate through the graph they break the symmetry used in the proof of
observation 2. Empirically, this yields much better approximations of the correlations. In
some cases (e.g. when the graph is disconnected) conditioning on a single point does not
break the symmetry throughout the graph and additional points need to be clamped.

In order to evaluate the quality of the approximation provided by BP, we compared BP us-
ing conditioning and exact inference over the dataset shown in fig 2a. Figure 3 displays the
results at two different temperatures: “low” and “high”. Each row presents the clustering
solution of exact inference and BP, and a scatter plot of the correlations over all of the edges
using the two methods. At the “low” temperature the approximation almost coincides with
the exact values, but at the “high” temperature BP over estimates the correlation values.
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Figure 3: Clustering results at a “low” temperature (upper row) and a “high” temperature (lower
row). The left and middle columns present clustering results of exact inference and of BP, respec-
tively. The right column compares the values of the correlations provided by the two methods. Each
dot corresponds to an edge in the graph. At “low” temperature most of the correlations are close to
1, hence many edges appear as a single dot.

Approximate inference using Generalized Belief Propagation Generalized Belief
Propagation algorithms (GBP) [10] extend the BP algorithm by sending messages that are
functions of clusters of variables, and has been shown to provide a better approximation
than BP in many applications. Can GBP improve the approximation of pairwise correla-
tions in typical cuts?



Our empirical studies show that the performance and convergence of GBP over a general
graph obtained from arbitrary points in Rn, strongly depends on the initial choice of clus-
ters (regions). As also observed by Minka et al [5] a specific choice of clusters may yield
worse results than BP, or may even cause GBP not to converge. However it is far from
obvious how to choose these clusters. In previous uses of GBP [10] the basic clusters used
were chosen by hand. In order to use GBP to approximate p(i, j) in a general graph, one
must obtain a useful automatic procedure for selecting these initial clusters. We have ex-
perimented with various heuristics but none of them gave good performance. However, in
the case of ordered graphs such as 2D grids and images, we have found that GBP gives an
excellent approximation when using four neighboring grid points as a region.

Figure 4a shows results of GBP approximations for a 30x30 2D uniform grid. The clique
size in a junction tree is of order 230 hence exact inference is infeasible. We compare the
correlations p(i, j) calculated using an extensive MCMC sampling procedure [9] to those
calculated using GBP with the clusters being four neighboring pixels in the graph. GBP
converges in only 10 iterations and can be seen to provide an excellent approximation.

Figure 4c presents a comparison of the MCMC correlations with those calculated by GBP
on a real 120x80 image shown in fig 4b with affinity based on color similarity. Figure 4d
presents the clustering results, which provides a segmentation of the image.
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Figure 4: (a) Scatter plot of pairwise correlations in a 30x30 grid, using MCMC [9] and GBP. Each
dot corresponds to the pairwise correlation of one edge at a specific temperature. Notice the excellent
correspondence between GBP and MCMC (c) The same comparison performed over the image in
(b). (d) shows a gray level map of the 15 largest clusters.

4 Learning Affinity Matrices from Labeled Datasets

As noted in the introduction using graphical models to compute typical cuts, can also be
advantageous for other aspects of the clustering problem, apart from computing p(i, j).
One such important advantage is learning the affinity matrix W (i, j) from labeled data.

In many problems, there are multiple ways to define affinities between any two datapoints.
For example, in image segmentation where the nodes are pixels, one can define affinity
based on color similarity, texture similarity or some combination of the two. Our goal is to
use a labeled training set of manually segmented images to learn the “right” affinities.

More specifically let us assume the “correct” affinity is a linear combination of a set
of known affinity functions {fk}

K
k=1, each corresponding to different features of the

data. Hence the affinity between neighboring points i and j, is defined by: W (i, j) =
∑K

k=1 αkfk(i, j). In addition assume we are given a labeled training sample, which con-
sists of the following: (i) A graph in which neighboring nodes are connected by edges. (ii)
Affinity values fk(i, j). (iii) A partition of the graph x. Our goal is to estimate the affinity
mixing coefficients αk.



This problem can be solved using the graphical model defined by the typical cut probability
distribution (Equation 6). Recall that the probability of a partition x is defined as

P (x) =
1

Z
e−cut(x) =

1

Z
e−

∑

<ij>
(1−δ(xi−xj))W (i,j) =

1

Z(α)
e−

∑K
k=1 αkfcutk(x) (8)

Where we have defined: fcutk(x) =
∑

<ij>(1 − δ(xi − xj))fk(i, j). fcutk(x) is the cut
value defined by x when only taking into account the affinity function fk, hence it can be
computed using the training sample. Differentiating the log likelihood with respect to αk

gives the exponential family equation:

∂ lnP (x)

∂αk
= −fcutk(x)+ < fcutk >α (9)

Equation 9 gives an intuitive definition for the optimal α: the optimal α is the one for which
< fcutk >α= fcutk(x), i.e, for optimal α the expected values of the cuts for each feature
separately, match exactly the values of these cuts in the training set.
Since we are dealing with the exponential family, the likelihood is convex and the ML
solution can be found using gradient ascent. To calculate the gradient explicitly, we use the
linearity of expectation:

< fcutk >α=
∑

<ij>

< (1 − δ(yi − yj) >α fk(i, j) =
∑

<ij>

(1 − p(i, j)α)fk(i, j)

Where p(i, j)α are the pairwise correlations for given values of α.

Equation 9 is visually similar to the learning rule derived by Meila and Shi [4] but the cost
function they are minimizing is actually different, hence the expectations are taken with
respect to completely different distributions.

4.1 Combining learning and GBP approximate inference

We experimented with the learning algorithm on images, with the pixels grid as the graph
and using GBP for approximating p(i, j)α. The three pixel affinity functions, {fk}

3
k=1,

correspond to the intensity differences in the R,G,B color channels. We used a standard
transformation of intensity difference to an affinity function by a Gaussian kernel.

The left pane in Fig 5 shows a synthetic example. There is one training image (fig 5a) but
two different manual segmentations (fig 5b,c). The first and second training segmentations
are based on an illumination-covariant and an illumination-invariant affinities, respectively.
We used gradient ascent as given by equation 9. Figure 5d shows a novel image and fig-
ures 5e,f show two different pairwise correlations of this image using the learned α. Indeed,
the algorithm learns to either ignore or not ignore illumination, based on the training set.
The right pane in figure 5 shows results on real images. For real images, we found that
a preprocessing of the image colors is required in order to learn shadow-invariant linear
transformation. This was done by saturating the image colors. The training segmentation
(figures 5a,b,c) ignores shadows. On the novel image (figure 5d) the most salient edge is a
shadow on the face. Nevertheless, the segmentation based on the learned affinity (figure 5e)
ignores the shadows and segments the facial features from each other. In contrast, a typical
cut segmentation which uses a naive affinity function (combining the three color channels
with uniform weights) segments mostly based on shadows (figure 5f).

5 Discussion

Pairwise clustering algorithms have a wide range of applicability due to their ability to find
clusters with arbitrary shapes. In this paper we have shown how pairwise clustering can be
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Figure 5: Left pane: A synthetic example for learning the affinity function. The top row presents the
training set: The input image (a), the clusters of the first (b) and second (c) experiments. The bottom
row presents the result of the learning algorithm: The input image (d), the marginal probabilities
p(i, j) (Eqn. 3) in the first (e) and second (f) experiments. Right pane: Learning a color affinity
function which is invariant to shadows. The top row shows the learning data set: The input image(a),
the pre-processed image (b) and the manual segmentation (invariant to shadows) (c). The bottom row
presents, from left to right, the pre-processed test image (d), an edge map produced by learning the
shadow-invariant affinity (e) and an edge map produced by a naive affinity function, combining the 3
color channels with uniform weights (f). The edge maps were computed by thresholding the pairwise
correlations p(i,j) (Eqn. 3). See text for details. Both illustrations are better viewed in color.

mapped to an inference problem in a graphical model. This equivalence allowed us to use
the standard tools of graphical models: exact and approximate inference and ML learning.
We showed how to combine approximate inference and ML learning in the challenging
problem of learning affinities for images from labeled data. We have only begun to use the
many tools of graphical models. We are currently working on learning from unlabeled sets
and on other approximate inference algorithms.
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