Learning in Spiking Neural Assemblies

Part of Advances in Neural Information Processing Systems 15 (NIPS 2002)

Bibtex Metadata Paper

Authors

David Barber

Abstract

We consider a statistical framework for learning in a class of net- works of spiking neurons. Our aim is to show how optimal local learning rules can be readily derived once the neural dynamics and desired functionality of the neural assembly have been speciļ¬‚ed, in contrast to other models which assume (sub-optimal) learning rules. Within this framework we derive local rules for learning tem- poral sequences in a model of spiking neurons and demonstrate its superior performance to correlation (Hebbian) based approaches. We further show how to include mechanisms such as synaptic de- pression and outline how the framework is readily extensible to learning in networks of highly complex spiking neurons. A stochas- tic quantal vesicle release mechanism is considered and implications on the complexity of learning discussed.