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Joaquin Quiñonero Candela
Informatics and Mathematical Modelling

Technical University of Denmark
Richard Petersens Plads, Building 321
DK-2800 Kongens, Lyngby, Denmark

jqc@imm.dtu.dk

Roderick Murray-Smith
Department of Computing Science

University of Glasgow, Glasgow, G12 8QQ
& Hamilton Institute

National University of Ireland, Maynooth
rod@dcs.gla.ac.uk

Abstract

We consider the problem of multi-step ahead prediction in time series
analysis using the non-parametric Gaussian process model.

�
-step ahead

forecasting of a discrete-time non-linear dynamic system can be per-
formed by doing repeated one-step ahead predictions. For a state-space
model of the form �������	�
������������������������� , the prediction of � at time��� �

is based on the point estimates of the previous outputs. In this pa-
per, we show how, using an analytical Gaussian approximation, we can
formally incorporate the uncertainty about intermediate regressor values,
thus updating the uncertainty on the current prediction.

1 Introduction

One of the main objectives in time series analysis is forecasting and in many real life prob-
lems, one has to predict ahead in time, up to a certain time horizon (sometimes called lead
time or prediction horizon). Furthermore, knowledge of the uncertainty of the prediction is
important. Currently, the multiple-step ahead prediction task is achieved by either explic-



itly training a direct model to predict
�

steps ahead, or by doing repeated one-step ahead
predictions up to the desired horizon, which we call the iterative method.

There are a number of reasons why the iterative method might be preferred to the ‘direct’
one. Firstly, the direct method makes predictions for a fixed horizon only, making it com-
putationally demanding if one is interested in different horizons. Furthermore, the larger

�
,

the more training data we need in order to achieve a good predictive performance, because
of the larger number of ‘missing’ data between

�
and

��� �
. On the other hand, the iterated

method provides any
�

-step ahead forecast, up to the desired horizon, as well as the joint
probability distribution of the predicted points.

In the Gaussian process modelling approach, one computes predictive distributions whose
means serve as output estimates. Gaussian processes (GPs) for regression have historically
been first introduced by O’Hagan [1] but started being a popular non-parametric modelling
approach after the publication of [7]. In [10], it is shown that GPs can achieve a predic-
tive performance comparable to (if not better than) other modelling approaches like neural
networks or local learning methods. We will show that for a

�
-step ahead prediction which

ignores the accumulating prediction variance, the model is not conservative enough, with
unrealistically small uncertainty attached to the forecast. An alternative solution is pre-
sented for iterative

�
-step ahead prediction, with propagation of the prediction uncertainty.

2 Gaussian Process modelling

We briefly recall some fundamentals of Gaussian processes. For a comprehensive intro-
duction, please refer to [5], [11], or the more recent review [12].

2.1 The GP prior model

Formally, the random function, or stochastic process, �	��� � is a Gaussian process, with
mean � ��� � and covariance function

� ����� ���	��� , if its values at a finite number of points,
�	��� � � ��������� �	����
 � , are seen as the components of a normally distributed random vector. If
we further assume that the process is stationary: it has a constant mean and a covariance
function only depending on the distance between the inputs � . For any � , we have

�	��� � � ��������� �	��� 
 ���� ������� � � (1)

with � ��� ������� � �	����� � � �	���	����� � � ����� ���	��� giving the covariance between the points
�	����� � and �	���	��� , which is a function of the inputs corresponding to the same cases � and . A common choice of covariance function is the Gaussian kernel1� ��� � ��� � � �"!$#&% ')(+*,.-/0)1

�
��� � 0 ( � �0 ��23 20 4

� (2)

where 5 is the input dimension. The 3 parameters (correlation length) allow a different
distance measure for each input dimension 6 . For a given problem, these parameters will
be adjusted to the data at hand and, for irrelevant inputs, the corresponding 3 0 will tend to
zero.

The role of the covariance function in the GP framework is similar to that of the kernels
used in the Support Vector Machines community. This particular choice corresponds to a
prior assumption that the underlying function � is smooth and continuous. It accounts for
a high correlation between the outputs of cases with nearby inputs.

1This choice was motivated by the fact that, in [8], we were aiming at unified expressions for the
GPs and the Relevance Vector Machines models which employ such a kernel. More discussion about
possible covariance functions can be found in [5].



2.2 Predicting with Gaussian Processes

Given this prior on the function � and a set of data � ������� �������	�� 1 � , our aim, in this
Bayesian setting, is to get the predictive distribution of the function value �	����
�� corre-
sponding to a new (given) input ��
 .
If we assume an additive uncorrelated Gaussian white noise, with variance �� , relates the
targets (observations) to the function outputs, the distribution over the targets is Gaussian,
with zero mean and covariance matrix such that � ��� � � ��� �  ��� ��� . We then adjust the
vector of hyperparameters ����� 3 � ����� 3 -  �������� so as to maximise the log-likelihood� ����� ��� �! 	���#"%$ ��� , where & is the vector of observations.

In this framework, for a new �'
 , the predictive distribution is simply obtained by condi-
tioning on the training data. The joint distribution of the variables being Gaussian, this
conditional distribution, � � �	��� � 
 $ � 
 �(� � is also Gaussian with mean and variance) ��� 
 � � * ��� 
 � �,+ ��� " (3)- 2 ��� 
 � � � ��� 
 � ( * ��� 
 � � � � � * ��� 
 � � (4)

where * ���.
 � �/� � ���.
���� � � ��������� � ���.
������ �0��� is the 132 *
vector of covariances between

the new point and the training targets and
� ����
�� � � ���.
����.
 � � *

, with
� � � ��� � as given by

(2).

The predictive mean serves as a point estimate of the function output, 4�����.
 � with uncer-
tainty - ���.
 � . And it is also a point estimate for the target, 4�5
 , with variance - 2 ���.
�� � �� .
3 Prediction at a random input

If we now assume that the input distribution is Gaussian, ��
 �� � )�687 ��� 6�7 � , the predictive
distribution is now obtain by integrating over ��
��� �	��� 
 ��$ ) 6 7 �)� 6 7 � � 9 ��� �	��� 
 ��$ � 
 ��� � � ��� 
 � 6 � 
 � (5)

where � � �	���.
���$ �.
���� � is Normal, as specified by (3) and (4).

3.1 Gaussian approximation

Given that this integral is analytically intractable (��� �	����
 ��$ �.
�� is a complicated function
of � 
 ), we opt for an analytical Gaussian approximation and only compute the mean and
variance of � � �	���'
���$ )�687 �)� 6�7 � . Using the law of iterated expectations and conditional
variance, the ‘new’ mean and variance are given by� � )�6�7 �)� 6�7 � � : 6�7 � :<;!= 6 7?> � �	��� 
 ��$ � 
 �@� �A: 6�7 � ) ��� 
 ��� (6) � )�6�7 �)� 6�7 � � : 6�7 � ��BDCE;!= 6 7?> � �	��� 
 ��$ � 
 ��� � ��BDC 687 �F:<;!= 6 7G> � �	��� 
 ��$ � 
 � �

� : 6�7 � - 2 ��� 
 ��� � ��BDC 687 � ) ��� 
 � � (7)

where : 6�7 indicates the expectation under H�
 .
In our initial development, we made additional approximations ([2]). A first and second
order Taylor expansions of ) ���'
 � and - 2 ���.
 � respectively, around ) 6�7 , led to� � )�6�7 ��� 687 � � ) � )�6�7 � (8) � )�6�7 ��� 687 � � - 2 � )�687 � � *,�I CKJML 2 - 2 ��� 
 �L � 
 L � 
 �,NNNN O 7

1�PDQ 7� 687�R � L ) ��� 
 �L � 
 NNNN �O 7
1�PDQ 7� 687 L ) ��� 
 �L � 
 NNNN O 7

1SPDQ 7 �(9)



The detailed calculations can be found in [2].

In [8], we derived the exact expressions of the first and second moments. Rewriting the
predictive mean ) ���.
 � as a linear combination of the covariance between the new ��
 and
the training points (as suggested in [12]), with our choice of covariance function, the cal-
culation of � ���'
�� then involves the product of two Gaussian functions:� � ) 6�7 ��� 687 � � 9 ) ��� 
 ������� 
 ��6 � 
 � /���� � 9 � ��� 
 ��� � ������� 
 ��6 � 
 (10)

with
�
� + � � " . This leads to (refer to [9] for details)� � )�6�7 �)� 6�7 � ����� � (11)

with  � � $ � � � � 6 7 �
	 $ � ��� 2 ! #&%� ( �2 � )�6 7 ( ��� � � � � 6 7 � � � ��� � )�6 7 ( � � ��� , where� ������BD 5� 3 2� ��������� 3 2- � and
	

is the 5 2 5 identity matrix.

In the same manner, we obtain for the variance � )�6�7 �)� 6�7 � � � � )�6�7 � )�6�7 � I���� � ��� � ( + � � ����� ( I�� ��� � � � 2 (12)

with� � � � $ , � � � � 6�7 ��	 $ ����� 2 !$# %! ( *, ����" ( )�6�7 � � � *, � � � 6�7 � � � ����" ( )�6�7 �$#
! #&%  (+*, ��� � ( �&% � � � , � � � � ��� � ( �&% � # (13)

where ��" � ��� � � � � ��' , .
3.2 Monte-Carlo alternative

Equation (5) can be solved by performing a numerical approximation of the integral, using
a simple Monte-Carlo approach:

� � �	��� 
 ��$ ) 6 7 ��� 6 7 � � 9 ��� �	��� 
 ��$ � 
 � ����� 
 � 6 � 
)( ** �/
�
1
�
��� �	��� 
 ��$ � 
 � � � (14)

where �'
 � are (independent) samples from ������
 � .
4 Iterative + -step ahead prediction of time series

For the multiple-step ahead prediction task of time series, the iterative method con-
sists in making repeated one-step ahead predictions, up to the desired horizon. Con-
sider the time series � �-, ����������� � and the state-space model � �/. � �	�#H �/. � �10 �/. whereH � . � � � � . ��� ��������� � � . � � ��� is the state at time

� � (we assume that the lag 2 is known)
and the (white) noise has variance D� .
Then, the“naive” iterative

�
-step ahead prediction method works as follows: it predicts

only one time step ahead, using the estimate of the output of the current prediction, as well
as previous outputs (up to the lag 2 ), as the input to the prediction of the next time step,
until the prediction

�
steps ahead is made. That way, only the output estimates are used

and the uncertainty induced by each successive prediction is not accounted for.

Using the results derived in the previous section, we suggest to formally incorporate the
uncertainty information about the intermediate regressor. That is, as we predict ahead in
time, we now view the lagged outputs as random variables. In this framework, the input



at time
���

is a random vector with mean formed by the predicted means of the lagged
outputs � ��� � ��� , � �

*
��������� 2 , given by (11). The 2 2!2 input covariance matrix has the

different predicted variances on its diagonal (with the estimated noise variance  � added to
them), computed with (12), and the off-diagonal elements are given by, in the case of the
exact solution, � ��� �
���	� �?H �	��� � 
 � � �  � ��� � ( )�6� � � , where  � is as defined previously and

� � � � �/� ��� � � � � � �687 )�687 � with
� � ��� � � � � � �687 � � � .

4.1 Illustrative examples

The first example is intended to provide a basis for comparing the approximate and exact
solutions, within the Gaussian approximation of (5)), to the numerical solution (Monte-
Carlo sampling from the true distribution), when the uncertainty is propagated as we predict
ahead in time. We use the second example, inspired from real-life problems, to show that
iteratively predicting ahead in time without taking account of the uncertainties induced by
each succesive prediction leads to inaccurate results, with unrealistically small error bars.

We then assess the predictive performance of the different methods by computing the av-
erage absolute error ( 2 � ), the average squared error ( 2 2 ) and average minus log predictive
density2 ( 2�� ), which measures the density of the actual true test output under the Gaussian
predictive distribution and use its negative log as a measure of loss.

4.1.1 Forecasting the Mackey-Glass time series

The Mackey-Glass chaotic time series constitutes a wellknown benchmark and a challenge
for the multiple-step ahead prediction task, due to its strong non-linearity [4]:

0
� = � >0 � �(��

� � � � ��� � = ���� >��� � = ���� > ,�� . We have
� ��� � , ,

�
��� � * and � �

*��
. The series is re-sampled

with period
*

and normalized. We choose 2 �
* �

for the number of lagged outputs in the
state vector, �"! �3� #$! �&% �'#(! �&) ���������'#(! ��* � and the targets,

� � � � � , are corrupted by a
white noise with variance � � �$� * .
We train a GP model with a Gaussian kernel such as (2) on

* �+� points, taken at random
from a series of ,+�$�$� points. Figure 1 shows the mean predictions with their uncertainties,
given by the exact and approximate methods, and -(� samples from the Monte-Carlo nu-
merical approximation, from

� �
*

to
� �

* �$� steps ahead, for different starting points.
Figure 2 shows the plot of the

* �+� -step ahead mean predictions (left) and their
, - uncer-

tainties (right), given by the exact and approximate methods, as well as the sample mean
and sample variance obtained with the numerical solution (average over -$� points).

These figures show the better performance of the exact method on the approximate one.
Also, they allow us to validate the Gaussian approximation, noticing that the error bars
encompass the samples from the true distribution. Table 1 provides a quantitative confir-
mation.

Table 1: Average (over -(�$� test points) absolute error ( 2 � ), squared error ( 2 2 ) and mi-
nus log predictive density ( 2 � ) of the

* �$� -step ahead predictions obtained using the exact
method ( . � ), the approximate one ( . 2 ) and the sampling from the true distribution ( . � ).2 � 2 2 2 �. � � � /0- � / � � 1$1$2 � � � ,(/ � 1. 2 � �3-4/+�+2 � � / � �+2 *

�
* 1+�$�.5� � � /+,$, � � 1 �4� - � � ,$2 � 2

2To evaluate these losses in the case of Monte-Carlo sampling, we use the sample mean and
sample variance.
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Figure 1: Iterative method in action: simulation from
*

to
* �+� steps ahead for different

starting points in the test series. Mean predictions with
, - error bars given by the ex-

act (dash) and approximate (dot) methods. Also plotted, -$� samples obtained using the
numerical approximation.
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Figure 2:
* �+� -step ahead mean predictions (left) and uncertainties (right.) obtained using

the exact method (dash), the approximate (dot) and the sample mean and variance of the
numerical solution (dash-dot).



4.1.2 Prediction of a pH process simulation

We now compare the iterative
�

-step ahead prediction results obtained when propagating
the uncertainty (using the approximate method) and when using the output estimates only
(the naive approach). For doing so, we use the pH neutralisation process benchmark pre-
sented in [3]. The training and test data consist of pH values (outputs � of the process) and
a control input signal ( � ).

With a model of the form � � � �	�
� ���� ����������� �� � ��� ���� ����������� �� � � , we train our GP on* , , , examples and consider a test set of
���

points (all data have been normalized).

Figure 3 shows the
* � -step ahead predicted means and variances obtained when propagat-

ing the uncertainty and when using information on the past predicted means only. The
losses calculated are the following: 2 � � � � *4� *�� , 2 2 � � � �0- � / and 2 � ��� � � , �$, for the
approximate method and 2 � � * 2$,$� � , for the naive one!
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Figure 3: Predictions from
*

to
* � steps ahead (left).

* � -step ahead mean predictions with
the corresponding variances, when propagating the uncertainty (dot) and when using the
previous point estimates only (dash).

5 Conclusions

We have presented a novel approach which allows us to use knowledge of the variance on
inputs to Gaussian process models to achieve more realistic prediction variance in the case
of noisy inputs.

Iterating this approach allows us to use it as a method for efficient propagation of uncer-
tainty in the multi-step ahead prediction task of non-linear time-series. In experiments on
simulated dynamic systems, comparing our Gaussian approximation to Monte Carlo simu-
lations, we found that the propagation method is comparable to Monte Carlo simulations,
and that both approaches achieved more realistic error bars than a naive approach which
ignores the uncertainty on current state.

This method can help understanding the underlying dynamics of a system, as well as being
useful, for instance, in a model predictive control framework where knowledge of the ac-
curacy of the model predictions over the whole prediction horizon is required (see [6] for a
model predictive control law based on Gaussian processes taking account of the prediction
uncertainty). Note that this method is also useful in its own right in the case of noisy model
inputs, assuming they have a Gaussian distribution.
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