
Kernel Dependency Estimation

Jason Weston, Olivier Chapelle, Andre Elisseeff,
Bernhard Scholkopf and Vladimir Vapnik*

Max Planck Institute for Biological Cybernetics, 72076 Tubingen, Germany
*NEC Research Institute, Princeton, NJ 08540 USA

Abstract

We consider the learning problem of finding a dependency between
a general class of objects and another, possibly different, general
class of objects. The objects can be for example: vectors, images,
strings, trees or graphs. Such a task is made possible by employing
similarity measures in both input and output spaces using ker­
nel functions, thus embedding the objects into vector spaces. We
experimentally validate our approach on several tasks: mapping
strings to strings, pattern recognition, and reconstruction from par­
tial images.

1 Introduction

In this article we consider the rather general learning problem of finding a de­
pendency between inputs x E X and outputs y E Y given a training set
(Xl,yl), ... ,(xm , Ym) E X x Y where X and Yare nonempty sets. This includes
conventional pattern recognition and regression estimation. It also encompasses
more complex dependency estimation tasks, e.g mapping of a certain class of strings
to a certain class of graphs (as in text parsing) or the mapping of text descriptions
to images. In this setting, we define learning as estimating the function j(x, ex*)
from the set offunctions {f (. , ex), ex E A} which provides the minimum value of the
risk function

R(ex) = r L(y, j(x,ex))dP(x, y)
ix xY

(1)

where P is the (unknown) joint distribution ofx and y and L(y, 1]) is a loss function,
a measure of distance between the estimate 1] and the true output y at a point x.
Hence in this setting one is given a priori knowledge of the similarity measure used
in the space Y in the form of a loss function. In pattern recognition this is often the
zero-one loss, in regression often squared loss is chosen. However, for other types
of outputs, for example if one was required to learn a mapping to images, or to
a mixture of drugs (a drug cocktail) to prescribe to a patient then more complex
costs would apply. We would like to be able to encode these costs into the method
of estimation we choose.

The framework we attempt to address is rather general. Few algorithms have been
constructed which can work in such a domain - in fact the only algorithm that we
are aware of is k-nearest neighbors. Most algorithms have focussed on the pattern

recognition and regression problems and cannot deal with more general outputs.
Conversely, specialist algorithms have been made for structured outputs, for exam­
ple the ones of text classification which calculate parse trees for natural language
sentences, however these algorithms are specialized for their tasks. Recently, kernel
methods [12, 11] have been extended to deal with inputs that are structured ob­
jects such as strings or trees by linearly embedding the objects using the so-called
kernel trick [5, 7]. These objects are then used in pattern recognition or regression
domains. In this article we show how to construct a general algorithm for dealing
with dependencies between both general inputs and general outputs. The algorithm
ends up in an formulation which has a kernel function for the inputs and a kernel
function (which will correspond to choosing a particular loss function) for the out­
puts. This also enables us (in principle) to encode specific prior information about
the outputs (such as special cost functions and/or invariances) in an elegant way,
although this is not experimentally validated in this work.

The paper is organized as follows. In Section 2 it is shown how to use kernel
functions to measure similarity between outputs as well as inputs. This leads to
the derivation of the Kernel Dependency Estimation (KDE) algorithm in Section
3. Section 4 validates the method experimentally and Section 5 concludes.

2 Loss functions and kernels

An informal way of looking at the learning problem consists of the following. Gen­
eralization occurs when, given a previously unseen x EX, we find a suitable
y E Y such that (x,y) should be "similar" to (Xl,Yl), ... ,(xm,Ym). For out­
puts one is usually given a loss function for measuring similarity (this can be, but
is not always, inherent to the problem domain). For inputs, one way of mea­
suring similarity is by using a kernel function. A kernel k is a symmetric func­
tion which is an inner product in some Hilbert space F, i.e., there exists a map
<I>k : X ---+ F such that k(X,X/) = (<I>k(X) . <I>k(X/)). We can think of the patterns
as <I>k(X) , <I>k(X/), and carry out geometric algorithms in the inner product space
("feature space") F. Many successful algorithms are now based on this approach,
see e.g [12, 11]. Typical kernel functions are polynomials k(x, Xl) = (x . Xl + 1)P
and RBFs k (x, Xl) = exp(-llx - x/l12 /2(2) although many other types (including
ones which take into account prior information about the learning problem) exist.

Note that , like distances between examples in input space, it is also possible to
think of the loss function as a distance measure in output space, we will denote
this space 1:. We can measure inner products in this space using a kernel function.
We will denote this as C(y,y/) = (<I>£(y). <I>£(y/)), where <I>£ : Y ---+ 1:. This map
makes it possible to consider a large class of nonlinear loss functions. l As in the
traditional kernel trick for the inputs, the nonlinearity is only taken into account
when computing the kernel matrix. The rest of the training is "simple" (e.g. , a
convex program, or methods of linear algebra such as matrix diagonalization) . It
also makes it possible to consider structured objects as outputs such as the ones
described in [5]: strings, trees, graphs and so forth. One embeds the output objects
in the space I: using a kernel.

Let us define some kernel functions for output spaces.

IFor instance, assuming the outputs live in lI~n, usin~ an RBF kernel, one obtains a
loss function II<I>e(y) - <I>e(Y/) 112 = 2 - 2 exp (-Ily - y'll /2(7 2). This is a nonlinear loss
function which takes the value 0 if Y and y' coincide, and 2 if they are maximally different .
The rate of increase in between (i.e., the "locality") , is controlled by a .

In M-class pattern recognition, given Y = {I, ... , M}, one often uses the distance
L(y, y') = 1- [y = y'], where [y = y'] is 1 if Y = y' and 0 otherwise. To construct a
corresponding inner product it is necessary to embed this distance into a Euclidean
space, which can be done using the following kernel:

£pat(y,y') = ~[y = y'], (2)

as L(y, y')2 = Illf>f(Y) - If>f(y')11 2 = £(y, y) + £(y', y') - 2£(y, y') = 1 - [y = y'].
It corresponds to embedding into aM-dimensional Euclidean space via the map
If>f(Y) = (0,0, . . . , 1', ... , 0) where the yth coordinate is nonzero. It is also possible
to describe multi-label classification (where anyone example belongs to an arbitrary
subset of the M classes) in a similar way.

For regression estimation, one can use the usual inner product

£reg(y, y') = (y . y'). (3)

For outputs such as strings and other structured objects we require the correspond­
ing string kernels and kernels for structured objects [5, 7]. We give one example
here, the string subsequence kernel employed in [7] for text categorization. This
kernel is an inner product in a feature space consisting of all ordered subsequences
of length r, denoted ~r. The subsequences, which do not have to be contiguous,
are weighted by an exponentially decaying factor A of their full length in the text:

(4)
u EEr i:u= s[i] j:u=t[j]

where u = xli] denotes u is the subsequence of x with indices 1 :::; it :::; ... :::; i lul
and l(i) = i lul - it + 1. A fast way to compute this kernel is described in [7].

Sometimes, one would also like apply the loss given by an (arbitrary) distance matrix
D of the loss between training examples, i.e where D ij = L(Yi,Yj). In general it
is not always obvious to find an embedding of such data in an Euclidian space (in
order to apply kernels) . However, one such method is to compute the inner product
with [11 , Proposition 2.27]:

(
m m m)

£(Yi,Yj) = ~ ID ijl2 - ~CpIDiPI2 - {;CqlDqjl2 + p~t cpcqlDpq l2 (5)

where coefficients Ci satisfy L i Ci = 1 (e.g using Ci = 1... for all i - this amounts
to using the centre of mass as an origin). See also [m for ways of dealing with
problems of embedding distances when equation (5) will not suffice.

3 Algorithm

Now we will describe the algorithm for performing KDE. We wish to minimize the
risk function (1) using the feature space F induced by the kernel k and the loss
function measured in the space £ induced by the kernel £. To do this we must learn
the mapping from If>k(X) to If>f(Y). Our solution is the following: decompose If>e(Y)
into p orthogonal directions using kernel principal components analysis (KPCA)
(see, e.g [11 , Chapter 14]). One can then learn the mapping from If>k(X) to each
direction independently using a standard kernel regression method, e.g SVM regres­
sion [12] or kernel ridge regression [9]. Finally, to output an estimate Y given a test
example x one must solve a pre-image problem as the solution of the algorithm is
initially a solution in the space £. We will now describe each step in detail.

1) Decomposition of outputs Let us construct the kernel matrix L on the
training data such that Lij = f(Yi,Yj), and perform kernel principal components
analysis on L. This can be achieved by centering the data in feature space us­
ing: V = (I - ~lm1~)L(1 - ~lm1~), where 1 is the m-dimensional identity
matrix and 1m is an m dimensional vector of ones. One then solves the eigen­
value problem Aa = Va where an is the nth eigenvector of V which we nor­
malize such that 1 = (an. Van) = An(an . an). We can then compute the
projection of If>£(y) onto the nth principal component v n = 2:::1o:ilf>£(Yi) by
(vn . If>£(y)) = 2:::1 o:if(Yi' y) .

2) Learning the map We can now learn the map from If>k(X) to ((Vi .
If>c(Y)), ... , (vP ·If>c(Y))) where p is the number of principal components. One can
learn the map by estimating each output independently. In our experiments we
use kernel ridge regression [9] , note that this requires only a single matrix inver­
sion to learn all p directions. That is , we minimize with respect to w the function
~ 2:::1 (Yi - (w . If> k (Xi)))2 + , IIwl1 2 in its dual form. We thus learn each output
direction (vn . If> £ (y)) using the kernel matrix Kij = k(Xi ' Xj) and the training labels
:Vi = (vn ·If>C(Yi)) , with estimator fn(x):

m

fn(x) = L ,Bik(Xi' x), (6)
i=l

3) Solving the pre-image problem During the testing phase, to obtain the
estimate Y for a given x it is now necessary to find the pre-image of the given
output If>c(Y). This can be achieved by finding:

Y(X) = argminYEyl1 ((vi. If>c(Y)), ... , (vP . If>c(Y))) - (It (x), ... , fp(x))11

For the kernel (3) it is possible to compute the solution explicit ely. For other
problems searching from a set of candidate solutions may be enough, e.g from the set
of training set outputs Yl, ... , Ym; in our experiments we use this set. When more
accurate solutions are required, several algorithms exist for finding approximate
pre-images e.g via fixed-point iteration methods, see [10] or [11, Chapter 18] for an
overview.

For the simple case of vectorial outputs with linear kernel (3), if the output is only
one dimension the method of KDE boils down to the same solution as using ridge
regression since the matrix L is rank 1 in this case. However, when there are d
outputs, the rank of L is d and the method trains ridge regression d times, but the
kernel PCA step first decorrelates the outputs. Thus, in the special case of multiple
outputs regression with a linear kernel , the method is also related to the work of
[2] (see [4, page 73] for an overview of other multiple output regression methods.)
In the case of classification, the method is related to Kernel Fisher Discriminant
Analysis (KFD) [8].

4 Experiments

In the following we validate our method with several experiments. In the ex­
periments we chose the parameters of KDE to be from the following: u* =
{l0-3 , 10-2,10-\ 10°,10\ 102, 103} where u = b, and the ridge parameter

, = {l0-4, 10-3, 10-2,10-\ 100 , 1O1 }. We chose them by five fold cross valida­
tion.

4.1 Mapping from strings to strings

Toy problem. Three classes of strings consist ofletters from the same alphabet of
4 letters (a,b,c,d), and strings from all classes are generated with a random length
between 10 to 15. Strings from the first class are generated by a model where
transitions from any letter to any other letter are equally likely. The output is the
string abad, corrupted with the following noise. There is a probability of 0.3 of
a random insertion of a random letter , and a probability of 0.15 of two random
insertions. After the potential insertions there is a probability of 0.3 of a random
deletion, and a probability of 0.15 of two random deletions. In the second class,
transitions from one letter to itself (so the next letter is the same as the last) have
probability 0.7, and all other transitions have probability 0.1. The output is the
string dbbd, but corrupted with the same noise as for class one. In the third class
only the letters c and d are used; transitions from one letter to itself have probability
0.7. The output is the string aabc, but corrupted with the same noise as for class
one. For classes one and two any starting letter is equally likely, for the third class
only c and d are (equally probable) starting letters.

input string output string
ccdddddddd --+ aabc
dccccdddcd --+ abc
adddccccccccc --+ bb
bbcdcdadbad --+ aebad
cdaaccadcbccdd --+ abad

Figure 1: Five examples from our artificial task (mapping strings to strings).

The task is to predict the output string given the input string. Note that this is
almost like a classification problem with three classes, apart from the noise on the
outputs. This construction was employed so we can also calculate classification error
as a sanity check. We use the string subsequence kernel (4) from [7] for both inputs
and outputs, normalized such that k(x,x') = k(x,x')/(Jk(x,x)Jk(x',x')). We
chose the parameters r = 3 and A = 0.01. In the space induced by the input kernel
k we then chose a further nonlinear map using an RBF kernel: exp(- (k(x, x) +
k(x',x') - 2k(x,x'))/2(J2).

We generated 200 such strings and measured the success by calculating the mean
and standard error of the loss (computed via the output kernel) over 4 fold cross
validation. We chose (J (the width of the RBF kernel) and'Y (the ridge parameter)
on each trial via a further level of 5 fold cross validation. We compare our method
to an adaptation of k-nearest neighbors for general outputs: if k = 1 it returns the
output of the nearest neighbor , otherwise it returns the linear combination (in the
space of outputs) of the k nearest neighbors (in input space) . In the case of k > 1,
as well as for KDE, we find a pre-image by finding the closest training example
output to the given solution. We choose k again via a further level of 5 fold cross
validation. The mean results, and their standard errors, are given in Table 1.

string loss
classification loss

KDE
0.676 ± 0.030
0.125 ± 0.012

k-NN
0.985 ± 0.029
0.205 ± 0.026

Table 1: Performance of KDE and k-NN on the string to string mapping problem.

4.2 Multi-class classification problem

We next tried a multi-class classification problem, a simple special case of the general
dependency estimation problem. We performed 5-fold cross validation on 1000 digits
(the first 100 examples of each digit) of the USPS handwritten 16x16 pixel digit
database, training with a single fold (200 examples) and testing on the remainder.
We used an RBF kernel for the inputs and the zero-one multi-class classification
loss for the outputs using kernel (2). We again compared to k-NN and also to 1-
vs-rest Support Vector Machines (SVMs) (see, e.g [11, Section 7.6]). We found k
for k-NN and a and "(for the other methods (we employed a ridge also to the SVM
method, reulting in a squared error penalization term) by another level of 5-fold
cross validation. The results are given in Table 2. SVMs and KDE give similar
results (this is not too surprising since KDE gives a rather similar solution to KFD,
whose similarity to SVMs in terms of performance has been shown before [8]). Both
SVM and KDE outperform k-NN.

KDE 1-vs-rest SVM k-NN
classification loss 0.0798 ± 0.0067 0.0847 ± 0.0064 0.1250 ± 0.0075

Table 2: Performance of KDE, 1-vs-rest SVMs and k-NN on a classification problem
of handwritten digits.

4.3 Image reconstruction

We then considered a problem of image reconstruction: given the top half (the first
8 pixel lines) of a USPS postal digit, it is required to estimate what the bottom
half will be (we thus ignored the original labels of the data).2 The loss function we
choose for the outputs is induced by an RBF kernel. The reason for this is that
a penalty that is only linear in y would encourage the algorithm to choose images
that are "inbetween" clearly readable digits. Hence, the difficulty in this task is
both choosing a good loss function (to reflect the end user's objectives) as well as
an accurate estimator. We chose the width a' of the output RBF kernel which
maximized the kernel alignment [1] with a target kernel generated via k-means
clustering. We chose k=30 clusters and the target kernel is K ij = 1 if Xi and Xj
are in the same cluster, and 0 otherwise. Kernel alignment is then calculated via:
A(K1 ,K2) = (K l,K2)F/J(Kl, Kl) F(K2,K2)F where (K , K')F = 2:7,'j=l KijK~j
is the Frobenius dot product, which gave a' = 0.35. For the inputs we use an RBF
kernel of width a .

We again performed 5-fold cross validation on the first 1000 digits of the USPS
handwritten 16x16 pixel digit database, training with a single fold (200 examples)
and testing on the remainder, comparing KDE to k-NN and a Hopfield net.3 The
Hopfield network we used was the one of [6] implemented in the Neural Network
Toolbox for Matlab. It is a generalization of standard Hopfield nets that has a
nonlinear transfer function and can thus deal with scalars between -1 and +1 ;
after building the network based on the (complete) digits of the training set we
present the top half of test digits and fill the bottom half with zeros, and then
find the networks equilibrium point. We then chose as output the pre-image from
the training data that is closest to this solution (thus the possible outputs are the

2 A similar problem, of higher dimensionality, would be to learn the mapping from top
half to complete digit .

3Note that training a naive regressor on each pixel output independently would not
take into account that the combination of pixel outputs should resemble a digit .

Figure 2: Errors in the digit database image reconstruction problem. Images
have to be estimated using only the top half (first 8 rows of pixels) of the orig­
inal image (top row) by KDE (middle row) and k-NN (bottom row). We show
all the test examples on the first fold of cross validation where k-NN makes
an error in estimating the correct digit whilst KDE does not (73 mistakes) and
vice-versa (23 mistakes). We chose them by viewing the complete results by
eye (and are thus somewhat subjective). The complete results can be found at
http://www.kyb.tuebingen.mpg.de/bs/people/weston/kde/kde.html.

same as the competing algorithms). We found (Y and I for KDE and k for k-NN by
another level of 5-fold cross validation. The results are given in Table 3.

KDE k-NN Hopfield net
RBF loss 0.8384 ± 0.0077 0.8960 ± 0.0052 1.2190 ± 0.0072

Table 3: Performance of KDE, k-NN and a Hopfield network on an image recon­
struction problem of handwritten digits.

KDE outperforms k-NN and Hopfield nets on average, see Figure 2 for comparison
with k-NN. Note that we cannot easily compare classification rates on this problem
using the pre-images selected since KDE outputs are not correlated well with the
labels. For example it will use the bottom stalk of a digit "7" or a digit "9" equally
if they are identical, whereas k-NN will not: in the region of the input space which
is the top half of "9"s it will only output the bottom half of "9"s. This explains why
measuring the class of the pre-images compared to the true class as a classification
problem yields a lower loss for k-NN, 0.2345 ± 0.0058, compared to KDE, 0.2985 ±
0.0147 and Hopfield nets, 0.591O±0.0137. Note that if we performed classification as
in Section 4.2 but using only the first 8 pixel rows then k-NN yields 0.2345 ± 0.0058,
but KDE yields 0.1878 ± 0.0098 and 1-vs-rest SVMs yield 0.1942 ± 0.0097, so k-NN
does not adapt well to the given learning task (loss function).

Finally, we note that nothing was stopping us from incorporating known invariances
into our loss function in KDE via the kernel. For example we could have used a
kernel which takes into account local patches of pixels rendering spatial information
or jittered kernels which take into account chosen transformations (translations,
rotations, and so forth). It may also be useful to add virtual examples to the

output matrix 1:- before the decomposition step. For an overview of incorporating
invariances see [11, Chapter 11] or [12].

5 Discussion

We have introduced a kernel method of learning general dependencies. We also gave
some first experiments indicating the usefulness of the approach. There are many
applications of KDE to explore: problems with complex outputs (natural language
parsing, image interpretation/manipulation, ...), applying to special cost functions
(e.g ROC scores) and when prior knowledge can be encoded in the outputs.

In terms of further research, we feel there are also still many possibilities to explore
in terms of algorithm development. We admit in this work we have a very simplified
algorithm for the pre-image part (just choosing the closest image given from the
training sample). To make the approach work on more complex problems (where
a test output is not so trivially close to a training output) improved pre-image
approaches should be applied. Although one can apply techniques such as [10] for
vector based pre-images, efficiently finding pre-images for structured objects such
as strings is an open problem. Finally, the algorithm should be extended to deal
with non-Euclidean loss functions directly, e.g for classification with a general cost
matrix. One naive way is to use a distance matrix directly, ignoring the PCA step.

References
[1] N. Cristianini, A. Elisseeff, and J. Shawe-Taylor. On optimizing kernel alignment .

Technical Report 2001-087, NeuroCOLT, 200l.

[2] I. Frank and J . Friedman. A Statistical View of Some Chemometrics Regression Tools.
Technometrics , 35(2):109- 147, 1993.

[3] T. Graepel, R. Herbrich, P. Bollmann-Sdorra, and K Obermayer. Classification on
pairwise proximity data. NIPS, 11:438- 444, 1999.

[4] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer-Verlag, New York , 200l.

[5] D. Haussler. Convolutional kernels on discrete structures. Technical Report UCSC­
CRL-99-10, Computer Science Department, University of California at Santa Cruz,
1999.

[6] J . Li, A. N. Michel, and W . Porod. Analysis and synthesis of a class of neural
networks: linear systems operating on a closed hypercube. IEEE Trans . on Circuits
and Systems, 36(11) :1405- 22, 1989.

[7] H. Lodhi , C. Saunders, J . Shawe-Taylor, N. Cristianini, and C. Watkins. Text clas­
sification using string kernels. Journal of Machine Learning Research, 2:419- 444,
2002.

[8] S. Mika, G. Ratsch, J. Weston , B. Sch6lkopf, and K-R. Miiller. Fisher discriminant
analysis with kernels. In Y.-H. Hu, J . Larsen , E. Wilson, and S. Douglas, editors,
N eural Networks for Signal Processing IX, pages 41- 48. IEEE, 1999.

[9] C. Saunders, V. Vovk , and A. Gammerman. Ridge regression learning algorithm in
dual variables. In J . Shavlik, editor, Machine Learning Proceedings of the Fifteenth
International Conference(ICML '98), San Francisco, CA, 1998. Morgan Kaufmann.

[10] B. Sch6lkopf, S. Mika, C. Burges, P. Knirsch, K-R. Miiller, G. Ratsch, and A. J.
Smola. Input space vs. feature space in kernel-based methods. IEEE-NN, 10(5):1000-
1017, 1999.

[11] B. Sch6lkopf and A. J. Smola. Learning with K ernels. MIT Press, Cambridge, MA,
2002.

[12] V. Vapnik. Statistical Learning Theory. John Wiley and Sons, New York, 1998.

