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Abstract 

We consider the learning problem of finding a dependency between 
a general class of objects and another, possibly different, general 
class of objects. The objects can be for example: vectors, images, 
strings, trees or graphs. Such a task is made possible by employing 
similarity measures in both input and output spaces using ker­
nel functions, thus embedding the objects into vector spaces. We 
experimentally validate our approach on several tasks: mapping 
strings to strings, pattern recognition, and reconstruction from par­
tial images. 

1 Introduction 

In this article we consider the rather general learning problem of finding a de­
pendency between inputs x E X and outputs y E Y given a training set 
(Xl,yl), ... ,(xm , Ym) E X x Y where X and Yare nonempty sets. This includes 
conventional pattern recognition and regression estimation. It also encompasses 
more complex dependency estimation tasks, e.g mapping of a certain class of strings 
to a certain class of graphs (as in text parsing) or the mapping of text descriptions 
to images. In this setting, we define learning as estimating the function j(x, ex*) 
from the set offunctions {f (. , ex), ex E A} which provides the minimum value of the 
risk function 

R(ex) = r L(y, j(x,ex))dP(x, y) 
ix xY 

(1) 

where P is the (unknown) joint distribution ofx and y and L(y, 1]) is a loss function, 
a measure of distance between the estimate 1] and the true output y at a point x. 
Hence in this setting one is given a priori knowledge of the similarity measure used 
in the space Y in the form of a loss function. In pattern recognition this is often the 
zero-one loss, in regression often squared loss is chosen. However, for other types 
of outputs, for example if one was required to learn a mapping to images, or to 
a mixture of drugs (a drug cocktail) to prescribe to a patient then more complex 
costs would apply. We would like to be able to encode these costs into the method 
of estimation we choose. 

The framework we attempt to address is rather general. Few algorithms have been 
constructed which can work in such a domain - in fact the only algorithm that we 
are aware of is k-nearest neighbors. Most algorithms have focussed on the pattern 



recognition and regression problems and cannot deal with more general outputs. 
Conversely, specialist algorithms have been made for structured outputs, for exam­
ple the ones of text classification which calculate parse trees for natural language 
sentences, however these algorithms are specialized for their tasks. Recently, kernel 
methods [12, 11] have been extended to deal with inputs that are structured ob­
jects such as strings or trees by linearly embedding the objects using the so-called 
kernel trick [5, 7]. These objects are then used in pattern recognition or regression 
domains. In this article we show how to construct a general algorithm for dealing 
with dependencies between both general inputs and general outputs. The algorithm 
ends up in an formulation which has a kernel function for the inputs and a kernel 
function (which will correspond to choosing a particular loss function) for the out­
puts. This also enables us (in principle) to encode specific prior information about 
the outputs (such as special cost functions and/or invariances) in an elegant way, 
although this is not experimentally validated in this work. 

The paper is organized as follows. In Section 2 it is shown how to use kernel 
functions to measure similarity between outputs as well as inputs. This leads to 
the derivation of the Kernel Dependency Estimation (KDE) algorithm in Section 
3. Section 4 validates the method experimentally and Section 5 concludes. 

2 Loss functions and kernels 

An informal way of looking at the learning problem consists of the following. Gen­
eralization occurs when, given a previously unseen x EX, we find a suitable 
y E Y such that (x,y) should be "similar" to (Xl,Yl), ... ,(xm,Ym). For out­
puts one is usually given a loss function for measuring similarity (this can be, but 
is not always, inherent to the problem domain). For inputs, one way of mea­
suring similarity is by using a kernel function. A kernel k is a symmetric func­
tion which is an inner product in some Hilbert space F, i.e., there exists a map 
<I>k : X ---+ F such that k(X,X/) = (<I>k(X) . <I>k(X/)). We can think of the patterns 
as <I>k(X) , <I>k(X/), and carry out geometric algorithms in the inner product space 
("feature space") F. Many successful algorithms are now based on this approach, 
see e.g [12, 11]. Typical kernel functions are polynomials k(x, Xl) = (x . Xl + 1)P 
and RBFs k (x, Xl) = exp( -llx - x/l12 /2(2 ) although many other types (including 
ones which take into account prior information about the learning problem) exist. 

Note that , like distances between examples in input space, it is also possible to 
think of the loss function as a distance measure in output space, we will denote 
this space 1:. We can measure inner products in this space using a kernel function. 
We will denote this as C(y,y/) = (<I>£(y). <I>£(y/)), where <I>£ : Y ---+ 1:. This map 
makes it possible to consider a large class of nonlinear loss functions. l As in the 
traditional kernel trick for the inputs, the nonlinearity is only taken into account 
when computing the kernel matrix. The rest of the training is "simple" (e.g. , a 
convex program, or methods of linear algebra such as matrix diagonalization) . It 
also makes it possible to consider structured objects as outputs such as the ones 
described in [5]: strings, trees, graphs and so forth. One embeds the output objects 
in the space I: using a kernel. 

Let us define some kernel functions for output spaces. 

IFor instance, assuming the outputs live in lI~n, usin~ an RBF kernel, one obtains a 
loss function II<I>e(y) - <I>e(Y/) 112 = 2 - 2 exp (-Ily - y'll /2(7 2 ). This is a nonlinear loss 
function which takes the value 0 if Y and y' coincide, and 2 if they are maximally different . 
The rate of increase in between (i.e., the "locality") , is controlled by a . 



In M-class pattern recognition, given Y = {I, ... , M}, one often uses the distance 
L(y, y') = 1- [y = y'], where [y = y'] is 1 if Y = y' and 0 otherwise. To construct a 
corresponding inner product it is necessary to embed this distance into a Euclidean 
space, which can be done using the following kernel: 

£pat(y,y') = ~[y = y'], (2) 

as L(y, y')2 = Illf>f(Y) - If>f(y')11 2 = £(y, y) + £(y', y') - 2£(y, y') = 1 - [y = y']. 
It corresponds to embedding into aM-dimensional Euclidean space via the map 
If>f(Y) = (0,0, . . . , 1', ... , 0) where the yth coordinate is nonzero. It is also possible 
to describe multi-label classification (where anyone example belongs to an arbitrary 
subset of the M classes) in a similar way. 

For regression estimation, one can use the usual inner product 

£reg(y, y') = (y . y'). (3) 

For outputs such as strings and other structured objects we require the correspond­
ing string kernels and kernels for structured objects [5, 7]. We give one example 
here, the string subsequence kernel employed in [7] for text categorization. This 
kernel is an inner product in a feature space consisting of all ordered subsequences 
of length r, denoted ~r. The subsequences, which do not have to be contiguous, 
are weighted by an exponentially decaying factor A of their full length in the text: 

(4) 
u EEr i:u= s[i] j:u=t[j] 

where u = xli] denotes u is the subsequence of x with indices 1 :::; it :::; ... :::; i lul 
and l(i) = i lul - it + 1. A fast way to compute this kernel is described in [7]. 

Sometimes, one would also like apply the loss given by an (arbitrary) distance matrix 
D of the loss between training examples, i.e where D ij = L(Yi,Yj). In general it 
is not always obvious to find an embedding of such data in an Euclidian space (in 
order to apply kernels) . However, one such method is to compute the inner product 
with [11 , Proposition 2.27]: 

( 
m m m ) 

£(Yi,Yj) = ~ ID ijl2 - ~CpIDiPI2 - {;CqlDqjl2 + p~t cpcqlDpq l2 (5) 

where coefficients Ci satisfy L i Ci = 1 (e.g using Ci = 1... for all i - this amounts 
to using the centre of mass as an origin). See also [m for ways of dealing with 
problems of embedding distances when equation (5) will not suffice. 

3 Algorithm 

Now we will describe the algorithm for performing KDE. We wish to minimize the 
risk function (1) using the feature space F induced by the kernel k and the loss 
function measured in the space £ induced by the kernel £. To do this we must learn 
the mapping from If>k(X) to If>f(Y). Our solution is the following: decompose If>e(Y) 
into p orthogonal directions using kernel principal components analysis (KPCA) 
(see, e.g [11 , Chapter 14]). One can then learn the mapping from If>k(X) to each 
direction independently using a standard kernel regression method, e.g SVM regres­
sion [12] or kernel ridge regression [9]. Finally, to output an estimate Y given a test 
example x one must solve a pre-image problem as the solution of the algorithm is 
initially a solution in the space £. We will now describe each step in detail. 



1) Decomposition of outputs Let us construct the kernel matrix L on the 
training data such that Lij = f(Yi,Yj), and perform kernel principal components 
analysis on L. This can be achieved by centering the data in feature space us­
ing: V = (I - ~lm1~)L(1 - ~lm1~), where 1 is the m-dimensional identity 
matrix and 1m is an m dimensional vector of ones. One then solves the eigen­
value problem Aa = Va where an is the nth eigenvector of V which we nor­
malize such that 1 = (an. Van) = An(an . an). We can then compute the 
projection of If>£(y) onto the nth principal component v n = 2:::1o:ilf>£(Yi) by 
(vn . If>£(y)) = 2:::1 o:if(Yi' y) . 

2) Learning the map We can now learn the map from If>k(X) to ((Vi . 
If>c(Y)), ... , (vP ·If>c(Y))) where p is the number of principal components. One can 
learn the map by estimating each output independently. In our experiments we 
use kernel ridge regression [9] , note that this requires only a single matrix inver­
sion to learn all p directions. That is , we minimize with respect to w the function 
~ 2:::1 (Yi - (w . If> k (Xi)))2 + , IIwl1 2 in its dual form. We thus learn each output 
direction (vn . If> £ (y)) using the kernel matrix Kij = k(Xi ' Xj) and the training labels 
:Vi = (vn ·If>C(Yi)) , with estimator fn(x): 

m 

fn(x) = L ,Bik(Xi' x), (6) 
i=l 

3) Solving the pre-image problem During the testing phase, to obtain the 
estimate Y for a given x it is now necessary to find the pre-image of the given 
output If>c(Y). This can be achieved by finding: 

Y(X) = argminYEyl1 ((vi. If>c(Y)), ... , (vP . If>c(Y))) - (It (x), ... , fp(x))11 

For the kernel (3) it is possible to compute the solution explicit ely. For other 
problems searching from a set of candidate solutions may be enough, e.g from the set 
of training set outputs Yl, ... , Ym; in our experiments we use this set. When more 
accurate solutions are required, several algorithms exist for finding approximate 
pre-images e.g via fixed-point iteration methods, see [10] or [11, Chapter 18] for an 
overview. 

For the simple case of vectorial outputs with linear kernel (3), if the output is only 
one dimension the method of KDE boils down to the same solution as using ridge 
regression since the matrix L is rank 1 in this case. However, when there are d 
outputs, the rank of L is d and the method trains ridge regression d times, but the 
kernel PCA step first decorrelates the outputs. Thus, in the special case of multiple 
outputs regression with a linear kernel , the method is also related to the work of 
[2] (see [4, page 73] for an overview of other multiple output regression methods.) 
In the case of classification, the method is related to Kernel Fisher Discriminant 
Analysis (KFD) [8]. 

4 Experiments 

In the following we validate our method with several experiments. In the ex­
periments we chose the parameters of KDE to be from the following: u* = 
{l0-3 , 10-2,10-\ 10°,10\ 102, 103} where u = b, and the ridge parameter 

, = {l0-4, 10-3, 10-2,10-\ 100 , 1O1 }. We chose them by five fold cross valida­
tion. 



4.1 Mapping from strings to strings 

Toy problem. Three classes of strings consist ofletters from the same alphabet of 
4 letters (a,b,c,d), and strings from all classes are generated with a random length 
between 10 to 15. Strings from the first class are generated by a model where 
transitions from any letter to any other letter are equally likely. The output is the 
string abad, corrupted with the following noise. There is a probability of 0.3 of 
a random insertion of a random letter , and a probability of 0.15 of two random 
insertions. After the potential insertions there is a probability of 0.3 of a random 
deletion, and a probability of 0.15 of two random deletions. In the second class, 
transitions from one letter to itself (so the next letter is the same as the last) have 
probability 0.7, and all other transitions have probability 0.1. The output is the 
string dbbd, but corrupted with the same noise as for class one. In the third class 
only the letters c and d are used; transitions from one letter to itself have probability 
0.7. The output is the string aabc, but corrupted with the same noise as for class 
one. For classes one and two any starting letter is equally likely, for the third class 
only c and d are (equally probable) starting letters. 

input string output string 
ccdddddddd --+ aabc 
dccccdddcd --+ abc 
adddccccccccc --+ bb 
bbcdcdadbad --+ aebad 
cdaaccadcbccdd --+ abad 

Figure 1: Five examples from our artificial task (mapping strings to strings). 

The task is to predict the output string given the input string. Note that this is 
almost like a classification problem with three classes, apart from the noise on the 
outputs. This construction was employed so we can also calculate classification error 
as a sanity check. We use the string subsequence kernel (4) from [7] for both inputs 
and outputs, normalized such that k(x,x') = k(x,x' )/(Jk(x,x)Jk(x',x')). We 
chose the parameters r = 3 and A = 0.01. In the space induced by the input kernel 
k we then chose a further nonlinear map using an RBF kernel: exp( - (k(x, x) + 
k(x',x') - 2k(x,x'))/2(J2). 

We generated 200 such strings and measured the success by calculating the mean 
and standard error of the loss (computed via the output kernel) over 4 fold cross 
validation. We chose (J (the width of the RBF kernel) and'Y (the ridge parameter) 
on each trial via a further level of 5 fold cross validation. We compare our method 
to an adaptation of k-nearest neighbors for general outputs: if k = 1 it returns the 
output of the nearest neighbor , otherwise it returns the linear combination (in the 
space of outputs) of the k nearest neighbors (in input space) . In the case of k > 1, 
as well as for KDE, we find a pre-image by finding the closest training example 
output to the given solution. We choose k again via a further level of 5 fold cross 
validation. The mean results, and their standard errors, are given in Table 1. 

string loss 
classification loss 

KDE 
0.676 ± 0.030 
0.125 ± 0.012 

k-NN 
0.985 ± 0.029 
0.205 ± 0.026 

Table 1: Performance of KDE and k-NN on the string to string mapping problem. 



4.2 Multi-class classification problem 

We next tried a multi-class classification problem, a simple special case of the general 
dependency estimation problem. We performed 5-fold cross validation on 1000 digits 
(the first 100 examples of each digit) of the USPS handwritten 16x16 pixel digit 
database, training with a single fold (200 examples) and testing on the remainder. 
We used an RBF kernel for the inputs and the zero-one multi-class classification 
loss for the outputs using kernel (2). We again compared to k-NN and also to 1-
vs-rest Support Vector Machines (SVMs) (see, e.g [11, Section 7.6]). We found k 
for k-NN and a and "( for the other methods (we employed a ridge also to the SVM 
method, reulting in a squared error penalization term) by another level of 5-fold 
cross validation. The results are given in Table 2. SVMs and KDE give similar 
results (this is not too surprising since KDE gives a rather similar solution to KFD, 
whose similarity to SVMs in terms of performance has been shown before [8]). Both 
SVM and KDE outperform k-NN. 

KDE 1-vs-rest SVM k-NN 
classification loss 0.0798 ± 0.0067 0.0847 ± 0.0064 0.1250 ± 0.0075 

Table 2: Performance of KDE, 1-vs-rest SVMs and k-NN on a classification problem 
of handwritten digits. 

4.3 Image reconstruction 

We then considered a problem of image reconstruction: given the top half (the first 
8 pixel lines) of a USPS postal digit, it is required to estimate what the bottom 
half will be (we thus ignored the original labels of the data).2 The loss function we 
choose for the outputs is induced by an RBF kernel. The reason for this is that 
a penalty that is only linear in y would encourage the algorithm to choose images 
that are "inbetween" clearly readable digits. Hence, the difficulty in this task is 
both choosing a good loss function (to reflect the end user's objectives) as well as 
an accurate estimator. We chose the width a' of the output RBF kernel which 
maximized the kernel alignment [1] with a target kernel generated via k-means 
clustering. We chose k=30 clusters and the target kernel is K ij = 1 if Xi and Xj 
are in the same cluster, and 0 otherwise. Kernel alignment is then calculated via: 
A(K1 ,K2 ) = (K l,K2)F/J(Kl, Kl) F(K2,K2)F where (K , K')F = 2:7,'j=l KijK~j 
is the Frobenius dot product, which gave a' = 0.35. For the inputs we use an RBF 
kernel of width a . 

We again performed 5-fold cross validation on the first 1000 digits of the USPS 
handwritten 16x16 pixel digit database, training with a single fold (200 examples) 
and testing on the remainder, comparing KDE to k-NN and a Hopfield net.3 The 
Hopfield network we used was the one of [6] implemented in the Neural Network 
Toolbox for Matlab. It is a generalization of standard Hopfield nets that has a 
nonlinear transfer function and can thus deal with scalars between -1 and +1 ; 
after building the network based on the (complete) digits of the training set we 
present the top half of test digits and fill the bottom half with zeros, and then 
find the networks equilibrium point. We then chose as output the pre-image from 
the training data that is closest to this solution (thus the possible outputs are the 

2 A similar problem, of higher dimensionality, would be to learn the mapping from top 
half to complete digit . 

3Note that training a naive regressor on each pixel output independently would not 
take into account that the combination of pixel outputs should resemble a digit . 



Figure 2: Errors in the digit database image reconstruction problem. Images 
have to be estimated using only the top half (first 8 rows of pixels) of the orig­
inal image (top row) by KDE (middle row) and k-NN (bottom row). We show 
all the test examples on the first fold of cross validation where k-NN makes 
an error in estimating the correct digit whilst KDE does not (73 mistakes) and 
vice-versa (23 mistakes). We chose them by viewing the complete results by 
eye (and are thus somewhat subjective). The complete results can be found at 
http://www.kyb.tuebingen.mpg.de/bs/people/weston/kde/kde.html. 

same as the competing algorithms). We found (Y and I for KDE and k for k-NN by 
another level of 5-fold cross validation. The results are given in Table 3. 

KDE k-NN Hopfield net 
RBF loss 0.8384 ± 0.0077 0.8960 ± 0.0052 1.2190 ± 0.0072 

Table 3: Performance of KDE, k-NN and a Hopfield network on an image recon­
struction problem of handwritten digits. 

KDE outperforms k-NN and Hopfield nets on average, see Figure 2 for comparison 
with k-NN. Note that we cannot easily compare classification rates on this problem 
using the pre-images selected since KDE outputs are not correlated well with the 
labels. For example it will use the bottom stalk of a digit "7" or a digit "9" equally 
if they are identical, whereas k-NN will not: in the region of the input space which 
is the top half of "9"s it will only output the bottom half of "9"s. This explains why 
measuring the class of the pre-images compared to the true class as a classification 
problem yields a lower loss for k-NN, 0.2345 ± 0.0058, compared to KDE, 0.2985 ± 
0.0147 and Hopfield nets, 0.591O±0.0137. Note that if we performed classification as 
in Section 4.2 but using only the first 8 pixel rows then k-NN yields 0.2345 ± 0.0058, 
but KDE yields 0.1878 ± 0.0098 and 1-vs-rest SVMs yield 0.1942 ± 0.0097, so k-NN 
does not adapt well to the given learning task (loss function). 

Finally, we note that nothing was stopping us from incorporating known invariances 
into our loss function in KDE via the kernel. For example we could have used a 
kernel which takes into account local patches of pixels rendering spatial information 
or jittered kernels which take into account chosen transformations (translations, 
rotations, and so forth). It may also be useful to add virtual examples to the 



output matrix 1:- before the decomposition step. For an overview of incorporating 
invariances see [11, Chapter 11] or [12]. 

5 Discussion 

We have introduced a kernel method of learning general dependencies. We also gave 
some first experiments indicating the usefulness of the approach. There are many 
applications of KDE to explore: problems with complex outputs (natural language 
parsing, image interpretation/manipulation, ... ), applying to special cost functions 
(e.g ROC scores) and when prior knowledge can be encoded in the outputs. 

In terms of further research, we feel there are also still many possibilities to explore 
in terms of algorithm development. We admit in this work we have a very simplified 
algorithm for the pre-image part (just choosing the closest image given from the 
training sample). To make the approach work on more complex problems (where 
a test output is not so trivially close to a training output) improved pre-image 
approaches should be applied. Although one can apply techniques such as [10] for 
vector based pre-images, efficiently finding pre-images for structured objects such 
as strings is an open problem. Finally, the algorithm should be extended to deal 
with non-Euclidean loss functions directly, e.g for classification with a general cost 
matrix. One naive way is to use a distance matrix directly, ignoring the PCA step. 
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