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Abstract

We propose a dynamic Bayesian model for motifs in biopolymer se-
quences which captures rich biological prior knowledge and positional
dependencies in motif structure in a principled way. Our model posits
that the position-specific multinomial parameters for monomer distribu-
tion are distributed as a latent Dirichlet-mixture random variable, and the
position-specific Dirichlet component is determined by a hidden Markov
process. Model parameters can be fit on training motifs using a vari-
ational EM algorithm within an empirical Bayesian framework. Varia-
tional inference is also used for detecting hidden motifs. Our model im-
proves over previous models that ignore biological priors and positional
dependence. It has much higher sensitivity to motifs during detection
and a notable ability to distinguish genuine motifs from false recurring
patterns.

1 Introduction

The identification of motif structures in biopolymer sequences such as proteins and DNA
is an important task in computational biology and is essential in advancing our knowledge
about biological systems. For example, the gene regulatory motifs in DNA provide key
clues about the regulatory network underlying the complex control and coordination of
gene expression in response to physiological or environmental changes in living cells [11].
There have been several lines of research on statistical modeling of motifs [7, 10], which
have led to algorithms for motif detection such as MEME [1] and BioProspector [9] Un-
fortunately, although these algorithms work well for simple motif patterns, often they are
incapable of distinguishing what biologists would recognize as a true motif from a random
recurring pattern [4], and provide no mechanism for incorporating biological knowledge of
motif structure and sequence composition.
Most motif models assume independence of position-specific multinomial distributions of
monomers such as nucleotides (nt) and animo acids (aa). Such strategies contradict our in-
tuition that the sites in motifs naturally possess spatial dependencies for functional reasons.
Furthermore, the vague Dirichlet prior used in some of these models acts as no more than
a smoother, taking little consideration of the rich prior knowledge in biologically identi-
fied motifs. In this paper we describe a new model for monomer distribution in motifs.
Our model is based on a finite set of informative Dirichlet distributions and a (first-order)
Markov model for transitions between Dirichlets. The distribution of the monomers is



a continuous mixture of position-specific multinomials which admit a Dirichlet prior ac-
cording to the hidden Markov states, introducing both multi-modal prior information and
dependencies. We also propose a framework for decomposing the general motif model into
a local alignment model for motif pattern and a global model for motif instance distribution,
which allows complex models to be developed in a modular way.
To simplify our discussion, we use DNA motif modeling as a running example in this paper,
though it should be clear that the model is applicable to other sequence modeling problems.

2 Preliminaries

DNA motifs are short (about 6-30 bp) stochastic string patterns (Figure 1) in the regulatory
sequences of genes that facilitate control functions by interacting with specific transcrip-
tional regulatory proteins. Each motif typically appears once or multiple times in the con-
trol regions of a small set of genes. Each gene usually harbors several motifs. We do not
know the patterns of most motifs, in which gene they appear and where they appear. The
goal of motif detection is to identify instances of possible motifs hidden in sequences and
learn a model for each motif for future prediction.
A regulatory DNA sequence can be fully specified by a character string ���������	��
�
�
����������

A,T,C,G � � , and an indicator string � that signals the locations of the motif occurrences.
The reason to call a motif a stochastic string pattern rather than a word is due to the vari-
ability in the “spellings” of different instances of the same motif in the genome. Conven-
tionally, biologists display a motif pattern (of length � ) by a multi-alignment � of all its �
instances. The stochasticity of motif patterns is reflected in the heterogeneity of nucleotide
species appearing in each column (corresponding to a position or site in the motif) of the
multi-alignment. We denote the multi-alignment of all instances of a motif specified by
the indicator string � in sequence � by ����������� . Since any ����������� can be characterized
by the nucleotide counts for each column, we define a counting matrix ������� (or ����������� ),
where each column  �"!���#$��!%�	��
�
�
�&��!('*) is an integer vector with four elements, giving the
number of occurrences of each nucleotide at position + of the motif. (Similarly we can de-
fine the counting vector  ��, for the whole sequence � .) With these settings, one can model
the nt-distribution of a position + of the motif by a position-specific multinomial distribu-
tion, -*!.�/#0-*!1�2��
�
�
��-*!3'*) . Formally, the problem of inferring 45� � ��6 ��7 ��
�
�
����698 7 � and: � � -��*��
�
�
��-*; � (often called a position-weight matrix, or PWM), given a sequence set< � � �=6 �>7 ��
�
�
���=698 7 � , is motif detection in a nutshell 1.
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Figure 1: Yeast motifs (solid line) with ? 30 bp flank-
ing regions (dashed line). The @ axis indexes posi-
tion and the A axis represents the information contentBDCFEHG0IKJ%L

of the multinomial distribution
I�J

of nt at po-
sition M . Note the two typical patterns: the U-shape and
the bell-shape.
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Figure 2: (Left) A general motif model
is a Bayes-ian multinet. Conditional on
the value of @ , A admits different distri-
butions (round-cornered boxes) param-
eterized by N . (Right) The HMDM
model for motif instances specified by a
given @ . Boxes are plates representing
replicates.

1Multiple motif detection can be formulated in a similar way, but for simplicity, we omit this
elaboration. See full paper for details. Also for simplicity, we omit the superscript O (sequence
index) of variable @ and A in wherever it is unnecessary.



3 Generative models for regulatory DNA sequences
3.1 General setting and related work

Without loss of generality, assume that the occurrences of motifs in a DNA sequence, as
indicated by � , are governed by a global distribution ������� :�� ��� � � ; for each type of motif,
the nucleotide sequence pattern shared by all its instances admits a local alignment model��� ������������� ��� : ! ��� ! � . (Usually, the background non-motif sequences are modeled by a
simple conditional model, ���0�
	 � �0� ��� ��� ��� :��� � , where the background nt-distribution
parameters

:����
are assumed to be learned a priori from the entire sequence and supplied

as constants in the motif detection process.) The symbols
: �

,
: ! , � �

, � ! stand for
the parameters and model classes in the respective submodels. Thus, the likelihood of a
regulatory sequence � is:

������� : ��� � ������������� :�� ��� � ��������� ��� : !>���/!��

� ��� ���0��� :�� ��� � ��������� ��� : !>���/! �����0��	 ��� ��� : ��� � � (1)

where �! � �0������� . Note that
: ! here is not necessarily equivalent to the position-specific

multinomial parameters
:

in Eq. 2 below, but is a generic symbol for the parameters of a
general model of aligned motif instances.
The model ���0��� : � ��� � � captures properties such as the frequencies of different motifs
and the dependencies between motif occurrences. Although specifying this model is an
important aspect of motif detection and remains largely unexplored, we defer this issue to
future work. In the current paper, our focus is on capturing the intrinsic properties within
motifs that can help to improve sensitivity and specificity to genuine motif patterns. For
this the key lies in the local alignment model ���#" �0��������� ��� : !����/!�� , which determines the
PWM of the motif. Depending on the value of the latent indicator ��$ (a motif or not
at position % ), � $ admits different probabilistic models, such as a motif alignment model
or a background model. Thus sequence � is characterized by a Bayesian multinet [6], a
mixture model in which each component of the mixture is a specific nt-distribution model
corresponding to sequences of a particular nature. Our goal in this paper is to develop an
expressive local alignment model ���#" ����������� ��� : !>���/!�� capable of capturing characteristic
site-dependencies in motifs.
In the standard product-multinomial (PM) model for local alignment, the columns of a
PWM are assumed to be independent [9]. Thus the likelihood of a multi-alignment � is:

������� : �D� ;&
!('��

'&
) '��

* -*! ),+�-�. / 
 (2)

Although a popular model for many motif finders, PM nevertheless is sensitive to noise and
random or trivial recurrent patterns, and is unable to capture potential site-dependencies
inside the motifs. Pattern-driven auxiliary submodels (e.g., the fragmentation model [10])
or heuristics (e.g., split a ’two-block’ motif into two coupled sub-motifs [9, 1]) have been
developed to handle special patterns such as the U-shaped motifs, but they are inflexible
and difficult to generalize. Some of the literature has introduced vague Dirichlet priors for
- in the PM [2, 10], but they are primarily used for smoothing rather than for explicitly
incorporating prior knowledges about motifs.
We depart from the PM model and introduce a dynamic hierarchical Bayesian model for
motif alignment � , which captures site dependencies inside the motif so that we can predict
biologically more plausible motifs, and incorporate prior knowledge of nucleotide frequen-
cies of general motif sites. In order to keep the local alignment model our main focus as
well as simplifying the presentation, we adopt an idealized global motif distribution model
called “one-per-sequence” [8], which, as the name suggests, assumes each sequence har-
bors one motif instance (at an unknown location). Generalization to more expressive global
models is straightforward and is described in the full paper.



3.2 Hidden Markov Dirichlet-Multinomial (HMDM) Model

In the HMDM model, we assume that there are � underlying latent nt-distribution proto-
types, according to which position-specific multinomial distributions of nt are determined,
and that each prototype is represented by a Dirichlet distribution. Furthermore, the choice
of prototype at each position in the motif is governed by a first-order Markov process.
More precisely, a multi-alignment ������; containing � motif instances is generated by the
following process. First we sample a sequence of prototype indicators �H� �����2��
�
�
����; �
from a first-order Markov process with initial distribution � and transition matrix 	 . Then
we repeat the following for each column + � ��
 ��
�
�
 ��� � : (1) A component from a mixture
of Dirichlets � � �  � � ��
�
�
�  �� � , where each  ����� ������� � ��
�
�
������� ' � , is picked according
to indicator ��! . Say we picked  � � . (2) A multinomial distribution  -*! is sampled according
to ���  - �  � � � , the probability defined by Dirichlet component � over all such distributions. (3)
All the nucleotides in column + are generated i.i.d. according to Multi �  -*!�� .
The complete likelihood of motif alignment ������; characterized by counting matrix � is:

��� � ��� ��- � : ! ��� ! � � ���$� � - �����0- � � ��� ������� � � ��	 �
�

;&
!('��

&� '�� � ��� � ��� �. '&
) '��

� -*! � )�������! #" � �. 6%$ ��& /�' - / .)( ��7 &� '�� � � � � � �" ; ( �&
!('��

&��� ) '�� � 	 ��� )�� � �. � /.+* " (3)

The major role of HMDM is to impose dynamic priors for modeling data whose distribu-
tions exhibit temporal or spatial dependencies. As Figure 2(b) makes clear, this model is
not a simple HMM for discrete sequences. In such a model the transition would be between
the emission models (i.e., multinomials) themselves, and the output at each time would be
a single data instance in the sequence. In HMDM, the transitions are between different
priors of the emission models, and the direct output of the HMM is the parameter vector
of a generative model, which will be sampled multiple times at each position to generate
random instances.
This approach is especially useful when we have either empirical or learned prior knowl-
edge about the dynamics of the data to be modeled. For example, for the case of motifs, bi-
ological evidence show that conserved positions (manifested by a low-entropy multinomial
nt-distribution) are likely to concatenate, and maybe so do the less conserved positions.
However, it is unlikely that conserved and less conserved positions are interpolated [4].
This is called site clustering, and is one of the main motivations for the HMDM model.

4 Inference and Learning

4.1 Variational Bayesian Learning

In order to do Bayesian estimation of the motif parameter - , and to predict the locations of
motif instances via � , we need to be able to compute the posterior distribution ���0- � ��� , which
is infeasible in a complex motif model. Thus we turn to variational approximation [5]. We
seek to approximate the joint posterior over parameters and hidden states ����-���� ����� � ��� �
with a simpler distribution ,��0-"��� ��� �D�-,/. � � �0-��)�2��, � �0�=� , where ,/. � � and ,0. � � can be, for
the time being, thought of as free distributions to be optimized. Using Jensen’s inequality,
we have the following lower found on the log likelihood:1!2 ���0��� � �43 576

-
6 �8, . � � ��-����2�:9 576

�;, � ���=� 1<2 ����� ����� -���� �, � �0� � = 1<2 ����-���� � � �,0. � � �0-"���2�#> (4)

� 	 KL �?,��0-��)� ���=�A@ ���0-��)� ����� � ��� ��� = � 

Thus, maximizing the lower bound of the log likelihood (call it B ��, � �C, . � � � ) with respect
to free distributions , � and , . � � is equivalent to minimizing the KL divergence between
the true joint posterior and its variational approximation. Keeping either , � or ,/. � � fixed



and maximizing B ��� � with respect to the other, we obtain the following coupled updates:, �� �0�=� � ����� # 1!2 ���0� ����� -���� ��)
	�� &  (5), �. � � ��-����2� � ����-���� � � � ����� # 1!2 ���0� ����� -"��� ��) 	�� (6)

In our motif model, the prior and the conditional submodels form a conjugate-exponential
pair (Dirichlet-Multinomial). It can be shown that in this case we can essentially recover
the same form of the original conditional and prior distributions in their variational ap-
proximations except that the parameterization is augmented with appropriate Bayesian and
posterior updates, respectively:, � �0� � � ���0������� �� ��- � ��� �D� ���0��� ��� �� ��- � ��� ��������� � � (7),0. � � �0-��)�2� � ���0-��)� � � � ����0������� ��� � (8)

where
�� �0- �D� # � ��- ��) 	 � &  (

� ��� � is the natural parameter) and
������������ � # ���0��������) 	 � .

As Eqs. 7 and 8 make clear, the locality of inference and marginalization on the latent vari-
ables is preserved in the variational approximation, which means probabilistic calculations
can be performed in the prior and the conditional models separately and iteratively. For
motif modeling, this modular property means that the motif alignment model and motif
distribution model can be treated separately with a simple interface of the posterior mean
for the motif parameters and expected sufficient statistics for the motif instances.

4.2 Inference and learning

According to Eq. 8, we replace the counting matrix � in Eq. 3, which is the output of the
HMDM model, by the expected counting matrix # �=) obtained from inference in the global
distribution model (we will handle this later, thanks to the locality preservation property
of inference in variational approximations), and proceed with the inference as if we have
“observations” # �=) . Integrating over - , we have the marginal distribution:

����� ��#$� )�� � ����� � � ; ( �&
!('�� ����� ! ' � � � ! � ;&

!('�� ����#$� ! )�� � ! � � (9)

a standard HMM with emission probability:� G���� J���� ���J! #" L  $ G��&%' � � L$ G��(��� J����*)+�,%' � � L
-./1032 $ G����

/ J �4) ' ��5 / L$ G ' ��5 / L 6 (10)

We can compute the posterior probability of the hidden states �����*!��(#$� )�� and the matrix of
co-occurrence probabilities ������! ���K! ' � �9# �=)�� using standard forward-backward algorithm.
We next compute the expectation of the natural parameters (which is

1<2 - for multinomial
parameters). Given the “observations” # �=) , the posterior mean is computed as follows:78 G0IKJ 5 / L  9;:=<?>

.A@CB IKJ 5 / � G
%IKJ?D�� J&� ' D������
D�E L,F %IKJ

 G< � 0=2IH G����J LKJ,L G ' ��5 / )+��� / J � LCML G��&%' � �1)N�(��� JO��� L&PQD
(11)

where R ����!�� is the posterior probability of the hidden state (an output of the forward-

backward algorithm) and S �0� � �UTWV X1Y�Z 6 � 7T � �[Z]\ 6 � 7Z 6 � 7 is the digamma function.

Following Eq. 7, given the posterior means of the multinomial parameters, computing the
expected counting matrix # �=) under the the one-per-sequence global model for sequence
set

� �=6 �>7 ��
�
�
 ���=6 � 7 � is straightforward based on Eq. 2 and we simply give the final results:

# �"! � ) ) � 
^ 8�_ '��
�Q` ( ; ' �� $�'�� , 6 _ 7 ��%���a���� 6 _ 7$ ' ! ( � �&b � � (12)



where ������� G�� L
	��� 2.
J 0��

-./
0=2 � 7I J 5 /I � 5 /�������� � `��� * . & / �  �� �"!$# �� 2< J 0%�
-</
0=2'& G A �����(*) J D,+	LKJ 78 G0IKJ 5 / LC 8 G0I � 5 / L&P.-

(13)

Bayesian estimates of the multinomial parameters for the position-specific nt-distribution
of the motif are obtained via fixed-point iteration under the following EM-like procedure:/ Variational E step: Compute the expected sufficient statistic, the count matrix

# �=) , via inference in the global motif model given
�� ��- ! � ) � ./ Variational M step: Compute the expected natural parameter

�� ��-*! � ) � via infer-
ence in the local motif alignment model given # �=) .

This basic inference and learning procedure provides a framework that scales readily to
more complex models. For example, the motif distribution model ���0�=� can be made more
sophisticated so as to model complex properties of multiple motifs such as motif-level
dependencies (e.g., co-occurrence, overlaps and concentration within regulatory modules)
without complicating the inference in the local alignment model. Similarly, the motif align-
ment model can also be more expressive (e.g., a mixture of HMDMs) without interfering
with inference in the motif distribution model.

5 Experiments

We test the HMDM model on a motif collection from The Promoter Database of Saccha-
romyces cerevisiae (SCPD). Our dataset contains twenty motifs, each has 6 to 32 instances
all of which are identified via biological experiments.
We begin with an experiment showing how HMDM can capture intrinsic properties of
the motifs. The posterior distribution of the position-specific multinomial parameters - ,
reflected in the parameters of the Dirichlet mixtures learned from data, can reveal the nt-
distribution patterns of the motifs. Examining the transition probabilities between different
Dirichlet components further tells us the about dependencies between adjacent positions
(which indirectly reveals the “shape” information). We set the total number of Dirichlet
components to be 8 based on an intelligent guess (using biological intuition), and Fig-
ure 3(a) shows the Dirichlet parameters fitted from the dataset via empirical Bayes estima-
tion. Among the 8 Dirichlet components, numbers 1-4 favor a pure distribution of single
nucleotides A, T, G, C, respectively, suggesting they correspond to “homogeneous” proto-
types. Whereas numbers 7 and 8 favor a near uniform distribution of all 4 nt-types, hence
“heterogeneous” prototypes. Components 5 and 6 are somewhat in between. Such patterns
agree well with the biological definition of motifs. Interestingly, from the learned transition
model of the HMM (Figure 3(b)), it can be seen that the transition probability from a ho-
mogeneous prototype to a heterogeneous prototype is significantly less than that between
two homogeneous or two heterogeneous prototypes, confirming an empirical speculation
in biology that motifs have the so-called site clustering property [4].
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Figure 3: (a) Dirichlet hyperparameters. (b) Markov transition matrix. (c) Boxplots of hit and mishit
rate of HMDM(1) and PM(2) on two motifs used during HMDM training.

Are the motif properties captured in HMDM useful in motif detection? We first examine
an HMDM trained on the complete dataset for its ability to detect motifs used in training in
the presence of a “decoy”: a permuted motif. By randomly permuting the positions in the



motif, the shapes of the “U-shaped” motifs (e.g., abf1 and gal4) change dramatically.2 We
insert each instance of motif/decoy pair into a 300-500 bp random background sequence at
random position � and ��� .3 We allow a � 3 bp offset as a tolerance window, and score a hit
when � 	����	�
��� = � (and a mis-hit when � � 	�����
��� � = � ), where � is the position
where a motif instance is found. The (mis)hit rate is the proportion of (mis)hits to the total
number of motif instances to be found in an experiment. Figure 3(c) shows a boxplot of the
hit and mishit rate of HMDM on abf1 and gal4 over 50 randomly generated experiments.
Note the dramatic contrast of the sensitivity of the HMDM to true motifs compared to that
of the PM model (which is essentially the MEME model).
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 (a) true motif only (b) true motif + decoy

Figure 4: Motif detection on an independent test dataset (the 8 motifs in Figure 1(a)). Four models
used are indexed as: 1. HMDM(bell); 2. HMDM(U); 3. HMDM-mixture; 4. PM. Boxplot of hit-rate
is for 80 randomly generated experiments (the center of the notch is the median).

How well does HMDM generalize? We split our data into a training set and a testing set,
and further divide the training set roughly based on bell-shaped and U-shaped patterns to
train two different HMDMs, respectively, and a mixture of HMDMs. In the first motif
finding task, we are given sequences each of which has only one true motif instance at a
random position. The results are given in Figure 4(a). We see that for 4 motifs, using an
HMDM or the HMDM-mixtures significantly improves performance over PM model. In
three other cases they are comparable, but for motif mcb, all HMDM models lose. Note that
mcb is very “conserved,” which is in fact “atypical” in the training set. It is also very short,
which diminishes the utility of an HMM. Another interesting observation from Figure 4(a)
is that even when both HMDMs perform poorly, the HMDM-mixtures can still perform
well (e.g., mat-a2), presumably because of the extra flexibility provided by the mixture
model.
The second task is more challenging and biologically more realistic, where we have both
the true motifs and the permuted “decoys.” We show only the hit-rate over 80 experiments
in Figure 4(b). Again, in most cases HMDM or the HMDM mixture outperforms PM.

6 Conclusions

We have presented a generative probabilistic framework for modeling motifs in biopolymer
sequences. Naively, categorical random variables with spatial/temporal dependencies can
be modeled by a standard HMM with multinomial emission models. However, the limited
flexibility of each multinomial distribution and the concomitant need for a potentially large
number of states to model complex domains may require a large parameter count and lead
to overfitting. The infinite HMM [3] solve this issue by replacing the emission model with
a Dirichlet process which provides potentially infinite flexibility. However, this approach
is purely data-driven and provides no mechanism for explicitly capturing multi-modality

2By permutation we mean each time the same permuted order is applied to all the instances of a
motif so that the multinomial distribution of each position is not changed but their order changed.

3We resisted the temptation of using biological background sequences because we would not
know if and how many other motifs are in such sequences, which renders them ill-suited for purposes
of evaluation.



in the emission and the transition models or for incorporating informative priors. Further-
more, when the output of the HMM involves hidden variables (as for the case of motif
detection), inference and learning is further complicated.
HMDM assumes that positional dependencies are induced at a higher level among the finite
number of informative Dirichlet priors rather than between the multinomials themselves.
Within such a framework, we can explicitly capture the multi-modalities of the multinomial
distributions governing the categorical variable (such as motif sequences at different posi-
tions) and the dependencies between modalities, by learning the model parameters from
training data and using them for future predictions. In motif modeling, such a strategy was
used to capture different distribution patterns of nucleotides (homogeneous and heteroge-
neous) and transition properties between patterns (site clustering). Such a prior proves to
be beneficial in searching for unseen motifs in our experiment and helps to distinguish more
probable motifs from biologically meaningless random recurrent patterns.
Although in the motif detection setting the HMDM model involves a complex missing
data problem in which both the output and the internal states of the HMDM are hidden,
we show that a variational Bayesian learning procedure allows probabilistic inference in
the prior model of motif sequence patterns and in the global distribution model of motif
locations to be carried out virtually separately with a Bayesian interface connecting the
two processes. This divide and conquer strategy makes it much easier to develop more
sophisticated models for various aspects of motif analysis without being overburdened by
the somewhat daunting complexity of the full motif problem.
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