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Abstract

Accurate representation of articulated motion is a challenging problem
for machine perception. Several successful tracking algorithms have
been developed that model human body as an articulated tree. We pro-
pose a learning-based method for creating such articulated models from
observations of multiple rigid motions. This paper is concerned with
recovering topology of the articulated model, when the rigid motion of
constituent segments is known. Our approach is based on finding the
Maximum Likelihood tree shaped factorization of the joint probability
density function (PDF) of rigid segment motions. The topology of graph-
ical model formed from this factorization corresponds to topology of the
underlying articulated body. We demonstrate the performance of our al-
gorithm on both synthetic and real motion capture data.

1 Introduction

Tracking human motion is an integral part of many proposed human-computer interfaces,
surveillance and identification systems, as well as animation and virtual reality systems. A
common approach to this task is to model the body as a kinematic tree, and reformulate
the problem as articulated body tracking[6]. Most of the state-of-the-art systems rely on
predefined kinematic models [16]. Some methods require manual initialization, while other
use heuristics [12], or predefined protocols [10] to adapt the model to observations.

We are interested in a principled way to recover articulated models from observations. The
recovered models may then be used for further tracking and/or recognition. We would
like to approach model estimation as a multistage problem. In the first stage the rigidly
moving segments are tracked independently; at the second stage, the topology of the body
(the connectivity between the segments) is recovered. After the topology is determined, the
joint parameters may be determined.

In this paper we concentrate on the second stage of this task, estimating the underlying
topology of the observed articulated body, when the motion of the constituent rigid bodies
is known. We approach this as a learning problem, in the spirit of [17]. If we assume that
the body may be modeled as a kinematic tree, and motion of a particular rigid segment is
known, then the motions of the rigid segments that are connected through that segment are
independent of each other. That is, we can model a probability distribution of the full body-



pose as a tree-structured graphical model, where each node corresponds to pose of a rigid
segment. This observation allows us to formulate the problem of recovering topology of
an articulated body as finding the tree-shaped graphical model that best (in the Maximum
Likelihood sense) describes the observations.

2 Prior Work

While state-of-the-art tracking algorithms [16] do not address either model creation or
model initialization, the necessity of automating these two steps has been long recognized.

The approach in [10] required a subject to follow a set of predefined movements, and
recovered the descriptions of body parts and body topology from deformations of apparent
contours. Various heuristics were used in [12] to adapt an articulated model of known
topology to 3D observations. Analysis of magnetic motion capture data was used by [14]
to recover limb lengths and joint locations for known topology, it also suggested similar
analysis for topology extraction. A learning based approach for decomposing a set of
observed marker positions and velocities into sets corresponding to various body parts was
described in [17]. Our work builds on the latter two approaches in estimating the topology
of the articulated tree model underlying the observed motion.

Several methods have been used to recover multiple rigid motions from video, such as
factorization [3, 18], RANSAC [7], and learning based methods [9]. In this work we as-
sume that the 3-D rigid motions has been recovered and are represented using a 2-D Scaled
Prismatic Model (SPM).

3 Representing Pose and Motion

A 2-D Scaled Prismatic Model (SPM) was proposed by [15] and is useful for representing
image motion of projections of elongated 3-D objects. It is obtained by orthographically
“projecting” the major axis of the object to the image plane. The SPM has four degrees of
freedom: in-plane translation, rotation, and uniform scale. 3-D rigid motion of an object,
may be simulated by SPM transformations, using in-plane translation for rigid translation,
and rotation and uniform scaling for plane-parallel and out-of-plane rotations respectively.

SPM motion (or pose) may be expressed as a linear transformation in projective space as

M =
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Following [13] we have chosen to use exponential coordinates, derived from constant ve-
locity equations, to parameterize motion.

An SPM transformation may be represented as an exponential map
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In this representation vx is a horizontal velocity, vy – vertical velocity, ω – angular velocity,
and c is a rate of scale change. θ is analogous to time parameter. Note that there is an
inherent scale ambiguity, since θ and (vx, vy, ω, c)T may be chosen arbitrarily, as long as

eξ̂ = M.



It can be shown ([13]) that if the SPM transformation is a combination of scaling and
rotation, it may be expressed by the sum of two twists, with coincident centers (ux, uy)
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of rotation and expansion.
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While “pure” translation, rotation or scale have intuitive representation with twists, the
combination or rotation and scale does not. We propose a scaled twist representation, that
preserves the intuitiveness of representation for all possible SPM motions. We want to
separate the “direction” of motion (the direction of translation or the relative amounts of
rotation and scale) from the amount of motion.

If the transformation involves rotation and/or scale, then we choose θ so that ||(ω, c)||2 = 1,
and then use eq. 3 to compute the center of rotation/expansion. The computation may be
expressed as a linear transformation:
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(4)

where ξ = (ṽx, ṽy , ω̃, c̃)T .

The the pure translational motion (ω = c = 0) may be regarded as an infinitely small
rotation about a point at infinity, e.g. the translation by l in the direction (ux, uy) may be
represented as τ = limω→0(l|ω|,
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, ω, 0)T , but we choose a direct representation
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ṽy

ω̃
c̃











(5)

In both cases τ = A(1, ξ̃T )T , and

det(A) =

{

θ−3 ω 6= 0 ∨ c 6= 0 (rotation/scaling)
θ−1 ω = 0 ∧ c = 0 (pure translation)

(6)

Note that τI = (0, ux, uy, ω, c)T represents identity transformation for any ux, uy, ω, and
c. It is always reported as τI = 0.

4 Learning Articulated Topology

We wish to infer the underlying topology of an articulated body from noisy observations
of a set of rigid body motions. Towards that end we will adopt a statistical framework for
fitting a joint probability density. As a practical matter, one must make choices regarding
density models; we discuss one such choice although other choices are also suitable.

We denote the set of observed motions of N rigid bodies at time t, 1 ≤ t ≤ F as a set
{Mt

s|1 ≤ s ≤ N}. Graphical models provide a useful methodology for expressing the de-
pendency structure of a set of random variables (cf. [8]). Variables Mi with observations



{Mt
i|1 ≤ t ≤ F} are assigned to the vertices of a graph, while edges between nodes indi-

cate dependency. We shall denote presence or absence of an edge between two variables,
Mi and Mj by an index variable Eij , equal to one if an edge is present and zero otherwise.
Furthermore, if the corresponding graphical model is a spanning tree, it can be expressed
as a product of conditional densities (e.g. see [11])

PM (M1, . . . , MN) =
∏

Ms

PMs|pa(Ms) (Ms|pa (Ms)) (7)

where pa(Ms) is the parent of Ms. While multiple nodes may have the same parent, each
individual node has only one parent node. Furthermore, in any decomposition one node
(the root node) has no parent. Any node (variable) in the model can serve as the root node
[8]. Consequently, a tree model constrains E. Of the possible tree models (choices of
E), we wish to choose the maximum likelihood tree which is equivalent to the minimum
entropy tree [4]. The entropy of a tree model can be written

H(M) =
∑

s

H(Ms) −
∑

Eij=1

I(Mi; Mj) (8)

where H(Ms) is the marginal entropy of each variable and I(Mi; Mj) is the mutual in-
formation between nodes Mi and Mj and quantifies their statistical dependence. Conse-
quently, the minimum entropy tree corresponds to the choice of E which minimizes the
sum of the pairwise mutual informations [1]. The tree denoted by E can be found via the
maximum spanning tree algorithm [2] using I(Mi; Mj) for all i, j as the edge weights.

Our conjecture is that if our data are sampled from a variety of motions the topology of
the estimated density model is likely to be the same as the topology of the articulated body
model. It follows from the intuition that when considering only pairwise relationships, the
relative motions of physically connected bodies will be most strongly related.

4.1 Estimation of Mutual Information

Computing the minimum entropy spanning tree requires estimating the pairwise mutual
informations between rigid motions Mi and Mj for all i, j pairs. In order to do so we
must make a choice regarding the parameterization of motion and a probability density
over that parameterization; to estimate articulated topology it is sufficient to use the the
Scaled Prismatic Model with twist parameterization described in Section 3).

4.2 Estimating Motion Entropy

We parameterize rigid motion, Mt
i, by the vector of quantities ξt

i (cf. Eq. 2). In general,

H(Mi) 6= H(ξi), (9)

but since there is a one-to-one correspondence between the Mi’s and ξi’s [4], we can
estimate the I(Mi;Mj) by first computing ξt

i , ξ
t
j from M

t
i,M

t
j

I(Mi;Mj) = I(ξi; ξj) = H(ξj) − H(ξj |ξi) (10)

Furthermore, if the relative motion Mj|i between segments si and sj (M t
j = M t

i M
t
j|i) is

assumed to be independent of Mi, it can be shown that

H(ξj |ξi) = H(log MiMj|i| log Mi) = H(log Mj|i) = H(ξj|i). (11)

We wish to use scaled twists (Section 3) to compute the entropies involved. Since the in-
volved quantities are in the linear relationship τ = A(1, ξ̃T )T (Eqs. 4 and 5), the entropies
are related,

H(ξ) = H(τ) − E[log det(A)], (12)
where E[log det(A)] may be estimated using Equation 6.



4.3 Estimating the Motion Kernel

In order to estimate the entropy of motion, we need to estimate the probability density
based on the available samples. Since the functional form of the underlying density is not
known we have chosen to use kernel-based density estimator,

p̂(τ) = α
∑

i

K(τ ; τi). (13)

Since our task is to determine the articulated topology, we wish to concentrate on “spatial”
features of the transformation, center of rotation for rotational motion, and the direction of
translation for translational, that correspond to two common kinds of joints, spherical and
prismatic. Thus we need to define a kernel function K(τ1; τ2) that captures the following
notion of “distance” between the motions:

1. If τ1 and τ2 do not represent pure translational motions, then they should be con-
sidered to be close if their centers of rotation are close.

2. If τ1 and τ2 are pure translations, then they should be considered close if their
directions are close.

3. If τ1 and τ2 represent different types of motion (i.e. rotation/scale vs. translation),
then they are arbitrarily far apart.

4. The identity transformation (θ = 0) is equidistant from all possible transforma-
tions (since any (ux, uy, ω, c)T combined with θ = 0 produces identity)

One kernel that satisfies these requirements is the following:

K(τ1; τ2) =







































































KR((ux1, uy1); (ux2, uy2)) Condition 1
(ω1 6= 0 ∨ c1 6= 0) ∧ (ω2 6= 0 ∨ c2 6= 0)

KT ((ux1, uy1); (ux2, uy2)) Condition 2
ω1 = 0 ∧ c1 = 0 ∧ ω2 = 0 ∧ c2 = 0

0 Condition 3
(ω1 6= 0 ∨ c1 6= 0) ∧ (ω2 = 0 ∧ c2 = 0)

0 Condition 3
(ω1 = 0 ∧ c1 = 0) ∧ (ω2 6= 0 ∨ c2 6= 0)

δ(0) Condition 4.
θ1 = 0 ∨ θ2 = 0

(14)

where KR and KT are Gaussian kernels with covariances estimated using methods from
[5].

5 Implementation

The input to our algorithm is a set of SPM poses (Section 3) {Pt
s|1 ≤ s ≤ S, 1 ≤ t ≤ T},

where S is the number of tracked rigid segments and F is the number of frames. In order
to compute the mutual information between the motion of segments s1 and s2, we first
compute motions of segment s1 in frames 1 < t ≤ F relative to its position in frame
t1 = 1,

M
t1t
s1

= P
t
s1

(Pt1
s1

)−1, (15)

and the transformation of s2 relative to s1 (with the relative pose Ps2|s1
= (Ps1

)−1
Ps2

),

M
t1t
s2|s1

= ((Pt
s1

)−1
P

t
s2

)((Pt1
s1

)−1.Pt1
s2

)−1 (16)

The parameter vectors τ t1t
s2

and τ t1t
s2|s1

are then extracted from the transformation matrices
Ms2

and Ms2|s1
(cf. Section 3), and the mutual information is estimated as described in

Section 4.2.



6 Results

We have tested our algorithm both on synthetic and motion capture data. Two synthetic se-
quences were generated with the following steps. First, the rigid segments were positioned
by randomly perturbing parameters of the corresponding kinematic tree structure. A set of
feature points was then selected for each segment. At each time step point positions were
computed based on the corresponding segment pose, and perturbed with Gaussian noise
with zero mean and standard deviation of 1 pixel. The inputs to the algorithm were the seg-
ment poses re-estimated from the feature point coordinates. In the motion capture-based
experiment, the segment poses were estimated from the marker positions.

The results of the experiments are shown in the Figures 6.1, 6.2 and 6.3. The first ex-
periment involved a simple kinematic chain with 3 segments in order to demonstrate the
operation of the algorithm. The system has a rotational joint between S1 and S2 and pris-
matic joint between S2 and S3.

The sample configurations of the articulated body are shown in the first row of the Figures
6.1. The graph computed using method from Section 4.2 and the corresponding maximum
spanning tree are in Figures 6.1(d, e).

The second experiment involved a humanoid torso-like synthetic model containing 5 rigid
segments. It was processed in a way similar to the first experiment. The results are shown
in Figure 6.2.

For the human motion experiment, we have used motion capture data of a dance sequence
(Figure 6.3(a-c)). The rigid segment motion was extracted from the positions of the markers
tracked across 220 frames (the marker correspondence to the body locations was known).
The algorithm was able to correctly recover the articulated body topology (Compare Fig-
ures 6.3(e) and 6.3(a)), when provided only with the extracted segment poses. The dance is
a highly structured activity, so not all degrees of freedom were explored in this sequence,
and mutual information between some unconnected segments (e.g. thighs S3 and S7) was
determined to be relatively large, although this did not impact the final result.

7 Conclusions

We have presented a novel general technique for recovering the underlying articulated
structure from information about rigid segment motion. Our method relies on only a very
weak assumption, that this structure may be represented by a tree with unknown topology.
While the results presented in this paper were obtained using the Scaled Prismatic Model
and non-parametric density estimator, our methodology does not rely on either modeling
assumption.
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Figure 6.1: Simple kinematic chain topology recovery. The first row shows 3 sample frames
from a 100 frame synthetic sequence. The adjacency matrix of the mutual information
graph is shown in (d), with intensities corresponding to edge weights. The vertices in
the graph correspond to the rigid segments labeled in (a). (e) is the recovered articulated
topology.
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Figure 6.2: Humanoid torso synthetic test. The sample frames from a randomly generated
150 frame sequence are shown in (a), (b), and (c). The adjacency matrix of the mutual
information graph is shown in (d), with intensities corresponding to edge weights. The
vertices in the graph correspond to the rigid segments labeled in (a). (e) is the recovered
articulated topology.
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Figure 6.3: Motion Capture based test. (a), (b), and (c) are the sample frames from a 220 frame
sequence. The adjacency matrix of the mutual information graph is shown in (d), with intensities
corresponding to edge weights. The vertices in the graph correspond to the rigid segments labeled in
(a). (e) is the recovered articulated topology.
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