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Abstract

Prototypes based algorithms are commonly used to reduce the computa-
tional complexity of Nearest-Neighbour (NN) classifiers. In this paper
we discuss theoretical and algorithmical aspects of such algorithms. On
the theory side, we present margin based generalization bounds that sug-
gest that these kinds of classifiers can be more accurate then the 1-NN
rule. Furthermore, we derived a training algorithm that selects a good set
of prototypes using large margin principles. We also show that the 20
years old Learning Vector Quantization (LVQ) algorithm emerges natu-
rally from our framework.

1 Introduction

Though fifty years have passed since the introduction of One Nearest Neighbour (1-NN) [1]
it is still a popular algorithm. 1-NN is a simple and intuitive algorithm but at the same time
achieves state of the art results [2]. However in large, high dimensional data set it often
become infeasible. One approach to face this computational problem is to approximate
the nearest neighbour [3] using various techniques. Alternative approach is to choose a
small data-set (aka prototypes) which represents the original training sample, and apply the
nearest neighbour rule only with respect to this small data-set. This solution maintains the
“spirit” of the original algorithm, while making it feasible. Moreover, it might improve the
accuracy by reducing noise over-fitting.

In this setting, the goal of the learning stage is to choose wisely the prototypes, i.e., in a way
that will yield good generalization 1. In this paper we use the Maximal Margin principle
[4, 5] for this purpose. The training data is used to measure the margin of each proposed
positioning of the prototypes. We combine these measurements to calculate a risk for each
prototype set and select the prototypes that minimize the risk.

Roughly speaking, margins measure the level of confidence a classifiers has with respect
to its decisions. This tool has become a primary method in machine learning during the
last decade. Two of the most powerful algorithms in the field, Support Vector Machines

1Good generalization means that the probability of misclassifying a new example is small.



(SVM) [4] and AdaBoost [5] are motivated and analyzed by margins. Since the introduction
of these algorithms dozens of papers were published on different aspect of margins in
supervised learning [6, 7, 8].

Learning Vector Quantization (LVQ) [9] is a well-known algorithm that deals with the
same problem of selecting prototypes. LVQ iterates over the training data and updates the
prototypes position. Although it is known for more then 20 years and in spite of its pop-
ularity, no adequate generalization bounds and theory were suggested for this algorithm.
In this paper we show that algorithms derived from the maximal margin principle contains
LVQ as a special case. We use this result to present generalization bounds and insights for
the LVQ algorithm.

Buckingham and Geva [10] were the first to explore the relations between maximal margin
principle and LVQ. They presented a variant named LMVQ and analyzed it. As in most of
the literature about LVQ they look at the algorithm as trying to estimate a density function
(or a function of the density) at each point. After estimating the density the Bayesian
decision rule is used. We take a different point of view on the problem and look at the
geometry of the decision boundary induced by the decision rule. Note that in order to
generate a good classification rule the only significant factor is where the decision boundary
lies (It is a well known fact that classification is easier then density estimation [11]).

Summary of the Results In section 2 we present the model and outline the LVQ family
of algorithms. A discussion and definition of margin is provided in section 3. The two
fundamental results are a bound on the generalization error and a theoretical reasoning for
the LVQ family of algorithms. In section 4 we present a bound on the gap between the
empirical and the generalization accuracy. This provides a guaranty on the performance
over unseen instances based on the empirical evidence. Although LVQ was designed as an
approximation to nearest neighbour the theorem suggests that the former is more accurate
in many cases. Indeed a simple experiment shows this prediction to be true. In section 5
we show how LVQ family of algorithms emerges from the generalization bound. These
algorithms minimize the bound using gradient descent. The different variants correspond
to different tradeoff between opposing quantities. In practice the tradeoff is controlled by
loss functions.

2 Problem Setting and the LVQ algorithm

The framework we are interested in is supervised learning for classification problems. In
this framework the task is to find a map from R

n into a finite set of labels Y . We focus
on classification functions of the following form: the classifiers are parameterized by a set
of points µ1, . . . , µk ∈ R

n which we refer to as prototypes. Each prototype is associated
with a label y ∈ Y . Given a new instance x ∈ R

n we predict that it has the same label as
the closest prototype, similar to the 1-nearest-neighbour rule (1-NN). We denote the label
predicted using a set of prototypes {µj}

k
j=1 by µ(x). The goal of the learning process in

this model is to find a set of prototypes which will predict accurately the labels of unseen
instances.

The Learning Vector Quantization (LVQ) family of algorithms works in this model. The
algorithm gets as an input a labelled sample S = {(xl, yl)}

m
l=1, where xl ∈ R

n and yl ∈ Y
and uses it to find a good set of prototypes. All the variants of LVQ share the following
common scheme. The algorithm maintains a set of prototypes each is assigned with a
predefined label, which is kept constant during the learning process. It cycles through the
training data S and on each iteration modifies the set of prototypes in accordance to one
instance (xt, yt). If the prototype µj has the same label as yt it is attracted to xt but if the
label of µj is different it is repelled from it. Hence LVQ updates the closest prototypes to



xt according to the rule:
µj ← µj ± αt(xt − µj) , (1)

where the sign is positive if the label of xt and µj agree, and negative otherwise. The
parameter αt is updated using a predefined scheme and controls the rate of convergence
of the algorithm. The variants of LVQ differ in which prototypes they choose to update in
each iteration and in the specific scheme used to modify αt.

For instance, LVQ1 and OLVQ1 updates only the closest prototype to xt in each itera-
tion. Another example is the LVQ2.1 which modifies the two closest prototypes µi and µj

to xt. It uses the same update rule (1) but apply it only if the following two conditions hold :
1. Exactly one of the prototypes has the same label as xt, i.e. yt.
2. The ratios of their distances from xt falls in a window: 1/s ≤ ‖xt − µi‖ / ‖xt − µj‖ ≤ s,

where s is the window size.
More variants of LVQ can be found in [9].

3 Margins

Margin plays an important role in current research of machine learning. It measures the
confidence of a classifier with respect to its predictions. One approach is to define margin
as the distance between an instance and the decision boundary induced by the classification
rule as illustrated in figure 1(a). Support Vector Machines [4] are based on this definition of
margin, which we refer to as Sample-Margin. However, an alternative definition, Hypothe-
sis Margin, exists. In this definition the margin is the distance that the classifier can travel
without changing the way it labels any of the sample points. Note that this definition re-
quires a distance measure between classifiers. This type of margin is used in AdaBoost [5]
and is illustrated in figure 1(b).

(a) (b)

Figure 1: Sample Margin (fig-
ure 1(a)) measures how much can
an instance travel before it hits
the decision boundary. On the
other hand Hypothesis Margin (fig-
ure 1(b)) measures how much can
the hypothesis travel before it hits
an instance.

It is possible to apply these two types of margin
in the context of LVQ. Recall that in our model a
classifier is defined by a set of labeled prototypes.
Such a classifier generates a decision boundary by
Voronoi tessellation. Although using sample mar-
gin is more natural as a first choice, it turns out
that this type of margin is both hard to compute
and numerically unstable in our context, since
small relocations of the prototypes might lead to a
dramatic change in the sample margin. Hence we
focus on the hypothesis margin and thus have to
define a distance measure between two classifiers.
We choose to define it as the maximal distance
between prototypes pairs as illustrated in figure 2.
Formally, let µ = {µj}

k
j=1 and µ̂ = {µ̂j}

k
j=1 de-

fine two classifiers, then

ρ (µ, µ̂) =
k

max
i=1
‖µi − µ̂i‖2 .

Note that this definition is not invariant to per-
mutations of the prototypes but it upper bounds
the invariant definition. Furthermore, the induced
margin is easy to compute (lemma 1) and lower
bounds the sample-margin (lemma 2).

Lemma 1 Let µ = {µj}
k
j=1 be a set of prototypes and x a sample point. Then the hypoth-

esis margin of µ with respect to x is θ = 1
2 (‖µj − x‖ − ‖µi − x‖) where µi (µj ) is the

closest prototype to x with the same (alternative) label.



Lemma 2 Let S = {xl}
m
l=1 be a sample and µ = (µ1, . . . , µk) be a set of prototypes.

sample-marginS(µ) ≥ hypothesis-marginS(µ)

Lemma 2 shows that if we find a set of prototypes with large hypothesis margin then it has
large sample margin as well.

4 Margin Based Generalization Bound

Figure 2: The distance measure on
the LVQ hypothesis class. The dis-
tance between the white and black
prototypes set is the maximal dis-
tance between prototypes pairs.

In this section we present a bound on the general-
ization error of LVQ type of classifiers.

When a classifier is applied to a training data it
is natural to use the training error as a predic-
tion to the generalization error (the probability of
misclassification of an unseen instance). In proto-
type based hypothesis the classifier assigns a con-
fidence level, i.e. margin, to its predictions. Tak-
ing into account the margin by counting instances
with small margin as mistakes gives a better pre-
diction and provide a bound on the generalization
error. This bound is given in terms of the num-
ber of prototypes, the sample size, the margin and
the margin based empirical error. The following
theorem states this result formally.

Theorem 1 In the following setting:

• Let S = {xi, yi}
m
i=1 ∈ {R

n × Y}m be a
training sample drawn by some underlying distribution D.

• Assume that ∀i ‖xi‖ ≤ R.

• Let µ be a set of prototypes with k prototypes from each class.

• Let 0 < θ < 1/2.

• Let αθ
S(µ) = 1

m

∣

∣{i : marginµ(xi) < θ}
∣

∣.

• Let eD(µ) be the generalization error: eD(µ) = Pr(x,y)∼D [µ(x) 6= y].

• Let δ > 0.

Then with probability 1− δ over the choices of the training data:

∀µ eD ≤ αθ
S(µ) +

√

8

m

(

d log2 32m

θ2
+ log

4

δ

)

(2)

where d is the VC dimension:

d = min

(

n + 1,
64R2

θ2

)

2k|Y| log ek2 (3)

This theorem leads to a few observations. First, note that the bound is dimension free, in
the sense that the generalization error is bounded independently of the input dimension (n)
much like in SVM. Hence it makes sense to apply these algorithms with kernels.

Second, note that the VC dimension grows as the number of prototypes grows (3). This
suggest that using too many prototypes might result in poor performance, therefore there



is a non trivial optimal number of prototypes. One should not be surprised by this result
as it is a realization of the Structural Risk Minimization (SRM) [4] principle. Indeed a
simple experiment supports this prediction. Hence not only that prototype based methods
are faster than Nearest Neighbour, they are more accurate as well. Due to space limitations
proofs are provided in the full version of this paper only.

5 Maximizing Hypothesis Margin Through Loss Function

Once margin is properly defined it is natural to ask for algorithm that maximizes it. We will
show that this is exactly what LVQ does. Before going any further we have to understand
why maximizing the margin is a good idea.

In theorem 1 we saw that the generalization error
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Figure 3: Different loss functions.
SVM, LVQ1 and OLVQ1 use the
“hinge” loss: (1 − θ)+. LVQ2.1
uses the broken linear: min(2, (1 −
2θ)+). AdaBoost use the exponen-
tial loss (e−θ).

can be bounded by a function of the margin θ and
the empirical θ-error (α). Therefore it is natural to
seek prototypes that obtain small θ-error for a large
θ. We are faced with two contradicting goals: small
θ-error verses large θ. A natural way to solve this
problem is through the use of loss function.

Loss function are a common technique in machine
learning for finding the right balance between op-
posed quantities [12]. The idea is to associate a
margin based loss (a “cost”) for each hypothesis
with respect to a sample. More formally, let L be a
function such that:

1. For every θ: L(θ) ≥ 0.
2. For every θ < 0: L(θ) ≥ 1.

We use L to compute the loss of an hypothesis with
respect to one instance. When a training set is avail-
able we sum the loss over the instances: L(µ) =

∑

l L(θl), where θl is the margin of the
l’th instance in the training data. The two axioms of loss functions guarantee that L(µ)
bounds the empirical error. It is common to add more restrictions on the loss function, such
as requiring that L is a non-increasing function. However, the only assumption we make
here is that the loss function L is differentiable.

Different algorithms use different loss functions [12]. AdaBoost uses the exponential loss
function L(θ) = e−βθ while SVM uses the “hinge” loss L(θ) = (1− βθ)+, where β > 0
is a scaling factor. See figure 3 for a demonstration of these loss functions.

Once a loss function is chosen, the goal of the learning algorithm is finding an hypothesis
that minimizes it. Gradient descent is a natural simple choice for the task. Recall that in
our case θl = (‖xl − µi‖ − ‖xl − µj‖)/2 where µj and µi are the closest prototypes to xl

with the correct and incorrect labels respectively. Hence we have that2

dθl

dµr

= Sl(r)
xl − µr

‖xl − µr‖

where Sl(r) is a sign function such that

Sl(r) =

{

1 if µr is the closest prototype with correct label.
−1 if µr is the closest prototype with incorrect label.
0 otherwise.

2Note that if xl = µj the derivative is not defined. This extreme case does not affect our conclu-
sions, hence or the sake of clarity we avoid the treatment of such extreme cases in this paper.



Algorithm 1 Online Loss Minimization.
Recall that L is a loss function, and γt varies to zero as the algorithm proceeds.

1. Choose an initial positions for the prototypes {µj}
k
j=1.

2. For t = 1 : T ( or∞)

(a) Receive a labelled instance xt, yt

(b) Compute the closest correct and incorrect prototypes to xt: µj , µi, and the
margin of xt, i.e. θt = 1/2(‖xt − µi‖ − ‖xt − µj‖)

(c) Apply the update rule for r = i, j:

µr ← µr + γt

dL(θt)

dθ
Sl(r)

xt − µr

‖xt − µr‖

Taking the derivative of L with respect to µr using the chain rule we obtain

dL

dµr

=
∑

l

dL(θl)

dθl

Sl(r)
xl − µr

‖xl − µr‖
(4)

By comparing the derivative to zero, we get that the optimal solution is achieved when
µr =

∑

l w
r
l xl where αr

l = dL(θl)
dθl

Sl(r)
‖xl−µr‖

and wr
l =

αr

l
∑

l
αr

l

. This leads to two conclu-

sions. First, the optimal solution is in the span of the training instances. Furthermore, from
its definition it is clear that wr

l 6= 0 only for the closest prototypes to xl. In other words,
wr

l 6= 0 if and only if µr is either the closest prototype to xl which have the same label
as xl, or the closest prototype to xl with alternative label. Therefore the notion of support
vectors [4] applies here as well.

5.1 Minimizing The Loss

Using (4) we can find a local minima of the loss function by a gradient descent algorithm.
The iteration in time t computes:

µr(t + 1)← µr(t) + γt

∑

l

dL(θl)

dθ
Sl(r)

xl − µr(t)

‖xl − µr(t)‖

where γt approaches zero as t increases. This computation can be done iteratively where
in each step we update µr only with respect to one sample point xl. This leads to the
following basic update step

µr ← µr + γt

dL(θl)

dθ
Sl(r)

xl − µr

‖xl − µr‖

Note that Sl(r) differs from zero only for the closest correct and incorrect prototypes to xl,
therefore a simple online algorithm is obtained and presented as algorithm 1.

5.2 LVQ1 and OLVQ1

The online loss minimization (algorithm 1) is a general algorithm applicable with differ-
ent choices of loss functions. We will now apply it with a couple of loss functions and
see how LVQ emerges. First let us consider the “hinge” loss function. Recall that the
hinge loss is defined to be L(θ) = (1 − βθ)+. The derivative3 of this loss function is

3The “hinge” loss has no derivative at the point θ = 1/β. Again as in other cases in this paper,
this fact is neglected.
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tion (

∑

(1 − θl)+) vs. number
of iterations of OLVQ1. One can
clearly see that it decreases.

dL(θ)

dθ
=

{

0 if θ > 1/β
−β otherwise

If β is chosen to be large enough, the update rule in
the online loss minimization is

µr = µr ± γtβ
xt − µr

‖xt − µr‖

This is the same update rule as in LVQ1 and
OLVQ1 algorithm [9] beside the extra factor of

β
‖xt−µr‖

. However, this is a minor difference since
β/ ‖xt − µr‖ is just a normalizing factor. A demon-
stration of the affect of OLVQ1 on the “hinge” loss
function is provided in figure 4. We applied the algo-

rithm to a simple toy problem consisting of three classes and a training set of 800 points.
We allowed the algorithm 10 prototypes. As expected the loss decreases as the algorithm
proceeds. For this purpose we used the lvq pak package [13].

5.3 LVQ2.1

The idea behind the definition of margin, and especially hypothesis margin was that a
minor change in the hypothesis can not change the way it labels an instance which had a
large margin. Hence when making small updates (i.e. small γt) one should focus only on
the instances which have margins close to zero. The same idea appeared also in Freund’s
boost by majority algorithm [14].

Kohonen adapted this idea to his LVQ2.1 algorithm [9]. The major difference between
LVQ1 and LVQ2.1 algorithm is that LVQ2.1 updates µr only if the margin of xt falls in-
side a certain window. The suitable loss function for LVQ2.1 is the broken linear loss
function (see figure 3). The broken linear loss is defined to be L(θ) = min(2, (1− βθ)+).
Note that for |θ| > 1/β the loss is constant (i.e. the derivative is zero), this causes the
learning algorithm to overlook instances with too high or too low margin. There exist sev-
eral differences between LVQ2.1 and the online loss minimization presented here, however
these differences are minor.

6 Conclusions and Further Research

In this paper we used the maximal margin principle together with loss functions to derive
algorithms for prototype positioning. We saw that LVQ can be considered as a special case
of this general algorithm. We also provide generalization bounds for any prototype based
classifier.

This formulation allows derivation of new algorithms in several different ways. The first
is to use other loss functions such as the exponential loss. A second way is to use other
classification rule, such as k-NN or parzan window. The proper way to adapt the algorithm
to the chosen rule is to define the margin accordingly, and modify the minimization process
in the training stage. We have constructed some basic experiments using the k-NN rule.
The performance of the modified classifier did not exceed those of the 1-NN rule. We
suggest the following explanation of these results. Usually the k-NN rule perform better
than the 1-NN rule as it filters noise better, and in our setting the noise filtering is already
achieved by using a small number of prototype.



Another extension to use a different distance measure instead of the l2 norm. This may
result in more complicated formula of the derivative of the loss function, but may improve
the results significantly in some cases. One specific interesting distance measure is the
Tangent Distance [2].

We also presented a generalization guarantee for prototype based classifier that is based
on the margin training error. The bound is dimension free and thus a kernel version of
the algorithm may yield a good performance. This modification is straightforward, as the
algorithm can be expressed as function of inner-products only. We performed preliminary
experiments with a kernelized version of the algorithm. It seems that it improves the accu-
racy when it is used with a small number of prototypes. However, allowing more prototypes
to the standard version achieves the same improvement.

A possible explanation of this phenomenon is the following. Recall that a classifier is
parametrised by a set of labelled prototypes that define a Voronoi tessellation. The decision
boundary of such a classifier is built of some of the lines of the Voronoi tessellation. In the
standard version these lines are straight lines. In the kernel version these lines are smooth
non-linear curves. As the number of prototypes grows, the decision boundary consists
of more, and shorter lines. Now, if we remember the fact that any smooth curve can be
approximated by a broken linear line, we come to the conclusion that any classifier that can
be generated by the kernel version, can be approximated by one that is generated by the
standard version, when is applied with more prototypes.
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