
Improving a Page Classifier with Anchor
Extraction and Link Analysis

William W. Cohen
Center for Automated Learning and Discovery,

Carnegie-Mellon University
5000 Forbes Ave, Pittsburgh, PA 15213

william@wcohen.com

Abstract

Most text categorization systems use simple models of documents and
document collections. In this paper we describe a technique that im-
proves a simple web page classifier’s performance on pages from a new,
unseen web site, by exploiting link structure within a site as well as
page structure within hub pages. On real-world test cases, this technique
significantly and substantially improves the accuracy of a bag-of-words
classifier, reducing error rate by about half, on average. The system uses
a variant of co-training to exploit unlabeled data from a new site. Pages
are labeled using the base classifier; the results are used by a restricted
wrapper-learner to propose potential “main-category anchor wrappers”;
and finally, these wrappers are used as features by a third learner to find
a categorization of the site that implies a simple hub structure, but which
also largely agrees with the original bag-of-words classifier.

1 Introduction

Most text categorization systems use simple models of documents and document collec-
tions. For instance, it is common to model documents as “bags of words”, and to model
a collection as a set of documents drawn from some fixed distribution. An interesting
question is how to exploit more detailed information about the structure of individual doc-
uments, or the structure of a collection of documents.

For web page categorization, a frequently-used approach is to use hyperlink information
to improve classification accuracy (e.g., [7, 9, 15]). Often hyperlink structure is used to
“smooth” the predictions of a learned classifier, so that documents that (say) are pointed to
by the same “hub” page will be more likely to have the same classification after smoothing.
This smoothing can be done either explicitly [15] or implicitly (for instance, by represent-
ing examples so that the distance between examples depends on hyperlink connectivity
[7, 9]).

The structure of individual pages, as represented by HTML markup structure or linguis-



tic structure, is less commonly used in web page classification: however, page structure is
often used in extracting information from web pages. Page structure seems to be particu-
larly important in finding site-specific extraction rules (“wrappers”), since on a given site,
formatting information is frequently an excellent indication of content [6, 10, 12].

This paper is based on two practical observations about web page classification. The first
is that for many categories of economic interest (e.g., product pages, job-posting pages,
and press releases) many sites contain “hub” or index pages that point to essentially all
pages in that category on a site. These hubs rarely link exclusively to pages of a single
category—instead the hubs will contain a number of additional links, such as links back to
a home page and links to related hubs. However, the page structure of a hub page often
gives strong indications of which links are to pages from the “main” category associated
with the hub, and which are ancillary links that exist for other (e.g., navigational) purposes.

As an example, refer to Figure 1. Links to pages in the main category associated with this
hub (previous NIPS conference homepages) are in the left-hand column of the table, and
hence can be easily identified by the page structure.

The second observation is that it is relatively easy to learn to extract links from hub pages
to main-category pages using existing wrapper-learning methods [8, 6]. Wrapper-learning
techniques interactively learn to extract data of some type from a single site using user-
provided training examples. Our experience in a number of domains indicates that main-
category links on hub pages (like the NIPS-homepage links from Figure 1) can almost
always be learned from two or three positive examples.

Exploiting these observations, we describe in this paper a web page categorization system
that exploits link structure within a site, as well as page structure within hub pages, to
improve classification accuracy of a traditional bag-of-words classifier on pages from a
previously unseen site. The system uses a variant of co-training [3] to exploit unlabeled
data from a new, previously unseen site. Specifically, pages are labeled using a simple
bag-of-words classifier, and the results are used by a restricted wrapper-learner to propose
potential “main-category link wrappers”. These wrappers are then used as features by a
decision tree learner to find a categorization of the pages on the site that implies a simple
hub structure, but which also largely agrees with the original bag-of-words classifier.

2 One-step co-training and hyperlink structure

Consider a binary bag-of-words classifier f that has been learned from some set of labeled
web pages D`. We wish to improve the performance of f on pages from an unknown web
site S, by smoothing its predictions in a way that is plausible given the hyperlink of S,
and the page structure of potential hub pages in S. As background for the algorithm, let
us consider first co-training, a well-studied approach for improving classifier performance
using unlabeled data [3].

In co-training one assumes a concept learning problem where every instance x can be
written as a pair (x1,x2) such that x1 is conditionally independent of x2 given the class
y. One also assumes that both x1 and x2 are sufficient for classification, in the sense that
the target function f(x) can be written either as a function of x1 or x2, i.e., that there exist
functions f1(x1) = f(x) and f2(x2) = f(x). Finally one assumes that both f1 and f2 are
learnable, i.e., that f1 ∈ H1 and f2 ∈ H2 and noise-tolerant learning algorithms A1 and
A2 exist for H1 and H2.



...

Webpages and Papers for Recent NIPS Conferences

A. David Redish (dredish@cs.cmu.edu) created and maintained these web pages from 1994
until 1996. L. Douglas Baker (ldbapp+nips@cs.cmu.edu) maintained these web pages from
1997 until 1999. They were maintained in 2000 by L. Douglas Baker and Alexander Gray
(agray+nips@cs.cmu.edu).

NIPS*2000 NIPS 13, the conference proceedings for 2000 (”Advances in Neural
Information Processing Systems 13”, edited by Leen, Todd K., Dietterich,
Thomas G. and Tresp, Volker will be available to all attendees in June 2001.

∗ Abstracts and papers from this forthcoming volume are available
on-line.
∗ BibTeX entries for all papers from this forthcoming volume are available
on-line.

NIPS*99 NIPS 12 is available from MIT Press.
Abstracts and papers from this volume are available on-line.

NIPS*98 NIPS 11 is available from MIT Press.
Abstracts and (some) papers from this volume are available on-line.

...

Figure 1: Part of a “hub” page. Links to pages in the main category associated with this
hub are in the left-hand column of the table.

In this setting, a large amount of unlabeled data Du can be used to improve the accuracy
of a small set of labeled data D`, as follows. First, use A1 to learn an approximation f ′

1

to f1 using D`. Then, use f ′

1
to label the examples in Du, and use A2 to learn from this

training set. Given the assumptions above, f ′

1
’s errors on Du will appear to A2 as random,

uncorrelated noise, and A2 can in principle learn an arbitrarily good approximation to f ,
given enough unlabeled data in Du. We call this process one-step co-training using A1,
A2, and Du.

Now, consider a set DS of unlabeled pages from a unseen web site S. It seems not un-
reasonable to assume that the words x1 on a page x ∈ S and the hub pages x2 ∈ S

that hyperlink to x are independent, given the class of x. This suggests that one-step co-
training could be used to improve a learned bag-of-words classifier f ′

1
, using the following

algorithm:

Algorithm 1 (One-step co-training):

1. Parameters. Let S be a web site, f ′

1
be a bag-of-words page classifier, and DS be

the pages on the site S.

2. Instance generation and labeling. For each page xi ∈ DS , represent xi as a vector
of all pages in S that hyperlink to xi. Call this vector x

i
2
. Let yi = f ′

1
(xi).

3. Learning. Use a learner A2 to learn f ′

2
from the labeled examples D2 =

{(xi
2
, yi)}i.

4. Labeling. Use f ′

2
(x) as the final label for each page x ∈ DS .



This “one-step” use of co-training is consistent with the theoretical results underlying co-
training. In experimental studies, co-training is usually done iteratively, alternating be-
tween using f ′

1
and f ′

2
for tagging the unlabeled data. The one-step version seems more

appropriate in this setting, in which there are a limited number of unlabeled examples over
which each x2 is defined.

3 Anchor Extraction and Page Classification

3.1 Learning to extract anchors from web pages

Algorithm 1 has some shortcomings. Co-training assumes a large pool of unlabeled data:
however, if the informative hubs for pages on S are mostly within S (a very plausible
assumption) then the amount of useful unlabeled data is limited by the size of S. With lim-
ited amounts of unlabeled data, it is very important that A2 has a strong (and appropriate)
statistical bias, and that A2 has some effective method for avoiding overfitting.

As suggested by Figure 1, the informativeness of hub features can be improved by using
knowledge of the structure of hub pages themselves. To make use of hub page structure,
we used a wrapper-learning system called WL2, which has experimentally proven to be
effective at learning substructures of web pages [6]. The output of WL2 is an extraction
predicate: a binary relation p between pages x and substrings a within x. As an example,
WL2 might output p = {(x, a) : x is the page of Figure 1 and a is an anchor appearing
in the first column of the table}. (An anchor is a substring of a web page that defines a
hyperlink.)

This suggests a modification of Algorithm 1, in which one-step co-training is carried out on
the problem of extracting anchors rather than the problem of labeling web pages. Specifi-
cally, one might map f1’s predictions from web pages to anchors, by giving a positive label
to anchor a iff a links to a page x such that f ′

1
(x) = 1; then use WL2 algorithm A2 to learn

a predicate p′

2
; and finally, map the predictions of p′

2
from anchors back to web pages.

One problem with this approach is that WL2 was designed for user-provided data sets,
which are small and noise-free. Another problem is that it unclear how to map class la-
bels from anchors back to web pages, since a page might be pointed to by many different
anchors.

3.2 Bridging the gap between anchors and pages

Based on these observations we modified Algorithm 1 as follows. As suggested, we map
the predictions about page labels made by f ′

1
to anchors. Using these anchor labels, we then

produce many small training sets that are passed to WL2. The intuition here is that some of
these training sets will be noise-free, and hence similar to those that might be provided by
a user. Finally, we use the many wrappers produced by WL2 as features in a representation
of a page x, and again use a learner to combine the wrapper-features and produce a single
classification for a page.

Algorithm 2:

1. Parameters. Let S be a web site, f ′

1
be a bag-of-words page classifier, and DS be

the pages on the site.

2. Link labeling. For each anchor a on a page x ∈ S, label a as tentatively-positive



if a points to a page x′ such that x′ ∈ S and f ′

1
(x′) = 1.

3. Wrapper proposal. Let P be the set of all pairs (x, a) where a is a tentatively-
positive link and x is the page on which a is found. Generate a number of small
sets D1, . . . , Dk containing such pairs, and for each subset Di, use WL2 to pro-
duce a number of possible extraction predicates pi,1, . . . , pi,ki

. (See appendix for
details).

4. Instance generation and labeling. We will say that the “wrapper predicate” pij

links to x iff pij includes some pair (x′, a) such that x′ ∈ DS and a is a hyperlink
to page x. For each page xi ∈ DS , represent xi as a vector of all wrappers pij

that link to x. Call this vector x
i
2
. Let yi = f ′

1
(xi).

5. Learning. Use a learner A2 to learn f ′

2
from the labeled examples DS =

{(xi
2
, yi)}i.

6. Labeling. Use f ′

2
(x) as the final label for each page x ∈ DS .

A general problem in building learning systems for new problems is exploiting existing
knowledge about these problems. In this case, in building a page classifier, one would
like to exploit knowledge about the related problem of link extraction. Unfortunately this
knowledge is not in any particularly convenient form (e.g., a set of well-founded parametric
assumptions about the data): instead, we only know that experimentally, a certain learning
algorithm works well on the problem. In general, it is often the case that this sort of
experimental evidence is available, even when a learning problem is not formally well-
understood.

The advantage of Algorithm 2 is that one need make no parametric assumptions about
the anchor-extraction problem. The bagging-like approach of “feeding” WL2 many small
training sets, and the use of a second learning algorithm to aggregate the results of WL2,
are a means of exploiting prior experimental results, in lieu of more precise statistical as-
sumptions.

4 Experimental results

To evaluate the technique, we used the task of categorizing web pages from company sites
as executive biography or other. We selected nine company web sites with non-trivial
hub structures. These were crawled using a heuristic spidering strategy intended to find
executive biography pages with high recall.1 The crawl found 879 pages, of which 128
were labeled positive. A simple bag-of-words classifier f ′

1
was trained using a disjoint set

of sites (different from the nine above), obtaining an average accuracy of 91.6% (recall
82.0%, precision 61.8%) on the nine held-out sites. Using an implemention of Winnow
[2, 11] as A2, Algorithm 2 obtained an average accuracy of 96.4% on the nine held-out
sites. Algorithm 2 improves over the baseline classifier f ′

1
on six of the nine sites, and

obtains the same accuracy on two more. This difference is significant at the 98% level with
a 2-tailed paired sign test, and at the 95% level with a 2-tailed paired t test.

Similar results were also obtained using a sparse-feature implementation of a C4.5-like
decision tree learning algorithm [14] for learner A2. (Note that both Winnow and C4.5 are
known to work well when data is noisy, irrelevant attributes are present, and the underlying
concept is “simple”.) These results are summarized in Table 1.

1The authors wish to thank Vijay Boyaparti for assembling this data set.



Site Classifier f ′

1
Algorithm 2 (C4.5) Algorithm 2 (Winnow)

Accuracy (SE) Accuracy (SE) Accuracy (SE)
1 1.000 (0.000) 0.960 (0.028) 0.960 (0.028)
2 0.932 (0.027) 0.955 (0.022) 0.955 (0.022)
3 0.813 (0.028) 0.934 (0.018) 0.939 (0.017)
4 0.904 (0.029) 0.962 (0.019) 0.962 (0.019)
5 0.939 (0.024) 0.960 (0.020) 0.960 (0.020)
6 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
7 0.918 (0.028) 0.990 (0.010) 0.990 (0.010)
8 0.788 (0.044) 0.882 (0.035) 0.929 (0.028)
9 0.948 (0.029) 0.948 (0.029) 0.983 (0.017)
avg 0.916 0.954 0.964

Table 1: Experimental results with Algorithm 2. Paired tests indicate that both versions of
Algorithm 2 significantly improve on the baseline classifier.

5 Related work

The introduction discusses the relationship between this work and a number of previous
techniques for using hyperlink structure in web page classification [7, 9, 15]. The WL2-
based method for finding document structure has antecedents in other techniques for learn-
ing [10, 12] and automatically detecting [4, 5] structure in web pages.

In concurrent work, Blei et al [1] introduce a probabilistic model called “scoped learning”
which gives a generative model for the situation described here: collections of examples
in which some subsets (documents from the same site) share common “local” features,
and all documents share common “content” features. Blei et al do not address the specific
problem considered here, of using both page structure and hyperlink structure in web page
classification. However, they do apply their technique to two closely related problems:
they augment a page classification method with local features based on the page’s URL,
and also augment content-based classification of “text nodes” (specific substrings of a web
page) with page-structure-based local features.

We note that Algorithm 2 could be adapted to operate in Blei et al’s setting: specifically,
the x2 vectors produced in Steps 2-4 could be viewed as “local features”. (In fact, Blei
et al generated page-structure-based features for their extraction task in exactly this way:
the only difference is that WL2 was parameterized differently.) The co-training framework
adopted here clearly makes different assumptions than those adopted by Blei et al. More ex-
perimentation is needed to determine which is preferable—current experimental evidence
[13] is ambiguous as to when probabilistic approaches should be prefered to co-training.

6 Conclusions

We have described a technique that improves a simple web page classifier by exploiting
link structure within a site, as well as page structure within hub pages. The system uses
a variant of co-training called “one-step co-training” to exploit unlabeled data from a new
site. First, pages are labeled using the base classifier. Next, results of this labeling are
propogated to links to labeled pages, and these labeled links are used by a wrapper-learner
called WL2 to propose potential “main-category link wrappers”. Finally, these wrappers



are used as features by another learner A2 to find a categorization of the site that implies a
simple hub structure, but which also largely agrees with the original bag-of-words classifier.
Experiments suggest the choice of A2 is not critical.

On a real-world benchmark problem, this technique substantially improved the accuracy
of a simple bag-of-words classifier, reducing error rate by about half. This improvement is
statistically significant.

Acknowledgments

The author wishes to thank his former colleagues at Whizbang Labs for many helpful dis-
cussions and useful advice.

Appendix A: Details on “Wrapper Proposal”

Extraction predicates are constructed by WL2 using a rule-learning algorithm and a config-
urable set of components called builders. Each builder B corresponds to a language LB of
extraction predicates. Builders support a certain set of operations relative to LB , in partic-
ular, the least general generalization (LGG) operation. Given a set of pairs D = {(xi, ai)}
such that each ai is a substring of xi, LGGB(D) is the least general p ∈ LB such that
(x, a) ∈ D ⇒ (x, a) ∈ p. Intuitively, LGGB(D) encodes common properties of the (posi-
tive) examples in D. Depending on B, these properties might be membership in a particular
syntactic HTML structure (e.g., a specific table column), common visual properties (e.g.,
being rendered in boldface), etc.

To generate subsets Di in Step 3 of Algorithm 2, we used every pair of links that pointed
to the two most confidently labeled examples; every pair of adjacent tentatively-positive
links; and every triple and every quadruple of tentatively-positive links that were separated
by at most 10 intervening tokens. These heuristics were based on the observation that in
most extraction tasks, the items to be extracted are close together. Careful implementation
allows the subsets Di to be generated in time linear in the size of the site. (We also note
that these heuristics were initially developed to support a different set of experiments [1],
and were not substantially modified for the experiments in this paper.)

Normally, WL2 is parameterized by a list B of builders, which are called by a “master”
rule-learning algorithm. In our use of WL2, we simply applied each builder Bj to a dataset
Di, to get the set of predicates {pij} = {LGGBj

(Di)}, instead of running the full WL2

learning algorithm.

References

[1] David M. Blei, J. Andrew Bagnell, and Andrew K. McCallum. Learning with scope,
with application to information extraction and classification. In Proceedings of UAI-
2002, Edmonton, Alberta, 2002.

[2] Avrim Blum. Learning boolean functions in an infinite attribute space. Machine
Learning, 9(4):373–386, 1992.

[3] Avrin Blum and Tom Mitchell. Combining labeled and unlabeled data with co-
training. In Proceedings of the 1998 Conference on Computational Learning Theory,
Madison, WI, 1998.



[4] William W. Cohen. Automatically extracting features for concept learning from the
web. In Machine Learning: Proceedings of the Seventeeth International Conference,
Palo Alto, California, 2000. Morgan Kaufmann.

[5] William W. Cohen and Wei Fan. Learning page-independent heuristics for extracting
data from web pages. In Proceedings of The Eigth International World Wide Web
Conference (WWW-99), Toronto, 1999.

[6] William W. Cohen, Lee S. Jensen, and Matthew Hurst. A flexible learning system
for wrapping tables and lists in HTML documents. In Proceedings of The Eleventh
International World Wide Web Conference (WWW-2002), Honolulu, Hawaii, 2002.

[7] David Cohn and Thomas Hofmann. The missing link - a probabilistic model of doc-
ument content and hypertext connectivity. In Advances in Neural Information Pro-
cessing Systems 13. MIT Press, 2001.

[8] Lee S. Jensen and William W. Cohen. A structured wrapper induction system for
extracting information from semi-structured documents. In Proceedings of the IJCAI-
2001 Workshop on Adaptive Text Extraction and Mining, Seattle, WA, 2001.

[9] T. Joachims, N. Cristianini, and J. Shawe-Taylor. Composite kernels for hypertext
categorisation. In Proceedings of the International Conference on Machine Learning
(ICML-2001), 2001.

[10] N. Kushmeric. Wrapper induction: efficiency and expressiveness. Artificial Intelli-
gence, 118:15–68, 2000.

[11] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2(4), 1988.

[12] Ion Muslea, Steven Minton, and Craig Knoblock. Wrapper induction for semistruc-
tured information sources. Journal of Autonomous Agents and Multi-Agent Systems,
16(12), 1999.

[13] Kamal Nigam and Rayyid Ghani. Analyzing the effectiveness and applicability of co-
training. In Proceedings of the Ninth International Conference on Information and
Knowledge Management (CIKM-2000), 2000.

[14] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann, 1994.

[15] S. Slattery and T. Mitchell. Discovering test set regularities in relational domains.
In Proceedings of the 17th International Conference on Machine Learning (ICML-
2000), June 2000.


