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Abstract 

Re-mapping patterns in order to equalize their distribution may 
greatly simplify both the structure and the training of classifiers. 
Here, the properties of one such map obtained by running a few 
steps of discrete-time dynamical system are explored. The system 
is called 'Digital Antennal Lobe' (DAL) because it is inspired by 
recent studies of the antennallobe, a structure in the olfactory sys
tem of the grasshopper. The pattern-spreading properties of the 
DAL as well as its average behavior as a function of its (few) de
sign parameters are analyzed by extending previous results of Van 
Vreeswijk and Sompolinsky. Furthermore, a technique for adapting 
the parameters of the initial design in order to obtain opportune 
noise-rejection behavior is suggested. Our results are demonstrated 
with a number of simulations. 

1 Introduction 

The complexity of classifiers and the difficulty of learning their parameters is affected 
by the distribution of the input patterns. It is easier to obtain simple and accurate 
classifiers when the patterns associated with different classes are spaced far apart 
and evenly in the input space. Distributions which are lumpy, with classes bunched 
up in some regions of space leaving other regions of space empty may be more 
difficult to classify. This problem is particularly evident in sensory processing. In 
olfaction numerous odors which we wish to discriminate are chemically very similar, 
for example the citrus family (orange, lemon, lime ... ), while many odors that are in 
principle possible never occur in practice. The uneven chemical spacing for the odors 
of interest is expensive: in biological systems there is a premium in the simplicity 
of the classifiers that will recognize each individual odor. 

When the dimension ofthe pattern space is large (e.g. D > 100), and the number of 
classes to be discriminated is relatively small (e.g. N < 1000), one may transform 
an uneven distribution of patterns into an evenly distributed one by means of a map 
that 'randomizes' the position of each pattern, i.e. that takes (small) neighborhoods 
of the input space and remaps them to random locations. In large-dimensional 
spaces it is exceedingly likely that two contiguous regions will be remapped to 
locations whose distance is comparable with the diameter of the space, and thus 
the distribution of patterns is equalized. 



We explore a simple dynamical system which realizes one such map for spreading 
patterns in a high-dimensional space. The input space is the analog D-dimensional 
hypercube (0,1)D and the output space the digital hypercube {0,1}D. The map 
is implemented by iterating a discrete-time first-order dynamical system consisting 
of two steps at each iteration: a first-order linear dynamical system followed by 
memory less thresholding. The interest of the map is that it makes very parsimonious 
use of computational hardware (e.g. on the order of D neurons or transistors) and 
yet it achieves good equalization in a few time steps. The ideas that we present are 
inspired by a computation that may take place in the olfactory system as suggested 
in Friedrichs and Laurent [1J and Laurent [2 , 3J. In insects, the anatomical structure 
where this computation is presumed to take place is called the 'Antennal Lobe' . 
Because of this we call the map a 'Digital Antennal Lobe' (DAL). 

2 The digital antennal lobe 

The dynamical system we propose is inspired by the overall architecture of the 
antennal lobe and is designed to explore its computational capabilities. We apply 
two key simplifications: we discretize time into equally spaced 'epochs', updating 
synchronously the state of all the neurons in the network at each epoch, and we dis
cretize the value of the state of each unit to the binary set {O, 1}. The physiological 
justification for these simplifications goes beyond the scope of this paper. 

Consider a collection of N binary neurons which are randomly connected and up
dated synchronously. The network is initially quiescent (i.e. all the neurons have 
constant state zero). At some time an input is applied causing the network to 
take values that are different from zero. The state of the network evolves in time. 
The state of the network after a given constant number of time-steps (e.g. 10-20 
time-steps) is the desired output of the system. Let us introduce the following 
notation: 

x~ E {O, 1 }V'i 
Xl 
c 

KE,KI,Ku 
A 

Aij 
aE, aI, au 

T 
it 
B 
gt 

Xl = 1(gt) 
mt 

mu 

Number of excitatory, inhibitory, and external input units. 
Total number of excitatory and inhibitory units (N = N E + N I ) 

Neuron index: i E {1, ... ,N E} for excitatory and 
i E {N E + 1, ... ,N} for inhibitory. 
Value of unit i at time t. 
Vector of values for all excitatory and inhibitory units at time t. 
Connectivity: cN is the number of inputs to a given neuron. 
Excitatory, inhibitory, and external input (i.e. KE = eN E) . 
Matrix of connections. A has eN2 nonzero entries. 
Connection weight of unit j to unit i. 
Excitatory, inhibitory, input weights (Aij E {aI,O,aE}). 
Activation thresholds for all the neurons 
Vector of pattern inputs. 
Matrix of excitatory connections from pattern inputs to units. 
Vector of neuronal input currents, i.e. gt+l = AXl + Bat - T. 
Update equation for x. 1(·) is the Heaviside function. 
Mean activity in the network at time t, i.e. mt = Li xi/No 
Fraction of the external inputs which are active. 

A DAL may be generated once the value of 5 parameters are chosen. Assume exci
tatory connection weight aE = au = 1 (this is a normalization constant). Choose 
a value for aI, c, T, N I , N E. Generate random connection matrices A and B with 
average connectivity e and connection weights aE, aI. Solve the following dynamical 
system forward in time from a zero initial condition: 
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Figure 1: Example of pattern spreading by the a DAL. (Left) Response of a DAL to 
10 uniformly distributed random olfactory input patterns applied at time epoch t = 3. 
Each vertical panel represents the state of excitatory units at a given time epoch (epochs 
2,4,8,10 and excitatory units 1-200 are shown) in response to all stimuli. In a given 
panel the row index refers to a given excitatory unit and the column index to a given 
input pattern (200 of 1024 excitatory units shown and 10 input patterns). A white dot 
represents a state of '1' and a dark dot represent a state of '0'. Around 10% of the neurons 
are active (i.e. state = '1') by the 8th time-epoch. The salt-and-pepper pattern present 
in each panel indicates that excitatory units respond differently to each input pattern. 
(Center) Activity of the DAL in response to 10 stimuli that differ only in one out of 1024 
input dimensions, i.e. 0.1%. The horizontal streaks in the panels corresponding to early 
epochs (t = 4 and t = 6) indicate that the excitatory units respond equally or similarly 
to all input patterns. The salt-and-pepper pattern in later epochs indicates that the 
time course of each excitatory units state becomes increasingly different in time. (Right) 
Time-course of the normalized average distance between the patterns corresponding to 
different families of input patterns: the red curve corresponds to input patterns that 
are very different (average difference 20%), while the green and blue curve correspond 
to families of similar input patterns: 0.1% average difference for the green curve and 
0.2% average difference for the blue curve. The parameters used in this network were 
aJ = 10, c = .05, T = 10, NE = 1024, NJ = 256. 

o 
Axt-1 + Bit - T, t > 0 

l(yt) 

zero initial condition 

neuronal input 

state update 

for some (constant) input pattern it. The notation 1(·) indicates the Heaviside step 
function. 

The overall behavior of the DAL in response to different olfactory inputs is illus
trated in Figure 1. Notice the main features of the DAL. (1) In response to an 
input each unit exhibits a complex temporal pattern of activity. (2) The pattern 
is different for different inputs. (3) The average activity rate of the neurons is 
approximately independent of the input pattern. (4) When very different input 
patterns are applied the average normalized Hamming distance between excitatory 
unit states is almost maximal immediately after the onset of the input stimulus. (5) 
When very similar input patterns are applied (e.g. 0.1 % average difference), the 
average normalized Hamming distance between excitatory unit patterns is initially 
very small, i.e. initially the excitatory units respond similarly to similar inputs. 
The difference increases with time and reaches almost maximal value within 8-9 
time-epochs. 

The 'chaotic' properties of sparsely connected networks of neurons were noticed 
and studied by Van Vreeswijk and Sompolinsky [5] in the limit of 00 neurons. In 
this paper we study networks with a small number of neurons comparable to the 
number observed within the antennal lobe. Additionally, we propose a technique 



for the design of such networks, and demonstrate the possibility of 'stabilizing' some 
trajectories by parameter learning. 

2.1 Analytic solution and equilibrium of network 

The use of simplified neural elements, namely McCulloch-Pitts units [4], allows us 
to represent the system as a simple discrete time dynamical system. Furthermore, 
we are able to create expressions for various network properties. Several distribu
tions can be used to approximate the number of active units in the population of 
excitatory, inhibitory, and external units, including: (1) the Binomial distribution, 
(2) the Poisson distribution, and (3) the Gaussian distribution. An approximation 
common to all three is that the activities of all units are uncorrelated. The Gaussian 
approximation will yield Van Vreeswijk and Sompolinsky's analysis [5]. 

Given the population activity at a time t, mt, we can calculate the expected value 
for the population activity at the next time step, mH1 : 

KE KJ Ku 

E(mt+1) = 2..= 2..= 2..=p(e)p(i)p(u)l(aEe + ali + auu - T) 
e=O i= O u=O 

Where pee), p(i), and p(u) are the probabilities of e excitatory, i inhibitory, and u 
external inputs being active. Both e and i are binomially distributed with mean 
activity m = mt, while the external input is binomially distributed with mean 
activity m = mu: 

The Poisson distribution can be used to approximate the binomial distribution 
for reasonable values of A, where for instance Ae = K emt. Using the Poisson 
approximation, the probability of j units being active is given by: 

In the limit as N ---+ 00, the distributions for the sum of the number of excitatory, 
inhibitory, and external units active approach normal distributions. Since the sum 
of Gaussian random variables is itself a Gaussian random variable, we can model 
the net input to a unit as the sum of the excitatory, inhibitory, and external input 
shifted by a constant representing the threshold. The mean f-L and variance (J2 of 
the Gaussian representing the input to an individual unit are then: 

f-L = aEmt KE + almt Kl + aumuKu - T 

(J2 = NE[a~mtc - a~c2mt] + Nl[aJmtc - aJc2mt] + Nu[a~muc - a~c2mu] 

The fraction of active input units can be determined by considering the area under 
the gaussian corresponding to positive cumulative input: 

The predicted population mean activity was calculated by imposing that the system 
is at equilibrium. The equilibrium condition is satisfied when mt = mHl. 



Figure 2: Design of a DAL. (Left) Behavior of the system for a given connectivity value. 
Light gray indicates inhibition-threshold values that yield a stable dynamical system. That 
is, small perturbations of firing activity do not result in large fluctuations in activity later 
in time. The dark blue line indicates equilibria, i.e. inhibition-threshold values for which 
the dynamical system rests at a constant mean-firing rate. (Center) The stable portions of 
the equilibrium curves for a number of connectivity values. Using this chart one may design 
an antennal lobe: for any given connectivity choose inhibition and threshold values that 
produce a desired mean firing rate. (Right) The design procedure produces networks that 
behave as desired. The arrows indicate parameter sets for which Monte Carlo simulation 
were performed in order to test the accuracy of the predictions. The values indexing the 
arrows correspond to the absolute difference ofthe predicted activity (.15) using a binomial 
approximation and the mean simulation activity across 10 random inputs to 10 different 
networks with the specified parameters sets. 

We found the binomial approximation to yield the most accurate predictions in 
parameter ranges of interest to us, namely 500-4000 total units and connectivities 
ranging from .05-.15 (see Figure 2). The binomial approximation was always within 
1 standard deviation of the Monte Carlo means. The Gaussian approximation 
yielded slightly less accurate predictions but required a fraction of the time to 
compute. 

3 Design of the Antennal Lobe 

The analysis described above allows us to design well behaved DALs. Specifically, 
we can predict which subsets of parameters in a given parameter range yield good 
network behavior. These predictions are made by solving the update equation for 
multiple sets of parameters and then determining which parameter ranges yield 
networks which are both stable and at equilibrium. 

Figure 2 outlines the design technique for a network of 512 excitatory and 512 
inhibitory units and a population mean activity of .15. The predicted activity of the 
network for different parameter sets corresponds well with that observed in Monte 
Carlo simulations. There is an average difference of .0061 between the predicted 
mean activity and that found in the simulations (see Figure 2, right plot). 

4 Learning for trajectory stabilization 

Consider a 'physical' implementation of the DAL, either by means of neurons in 
a biological system or by transistors in an electronic circuit. The inevitable pres
ence of noise points to a fatal flaw of the DAL as we have seen it so far. The 
key property of the DAL is input decorrelation. In the presence of noise the same 
input applied multiple times to the same network will produce divergent trajec
tories , hence different final conditions, thus making the use of DALs for pattern 



classification problematic. 

Consider the possibility that noise is present in the system: as a result of fluctuations 
in the level of the input ii, fluctuations in the biophysical properties of the neurons, 
etc. We may represent this noise as an additional term fi in the dynamical system: 

ifAX't + Biit - T 
X'tH l(if + fit) 

Whatever the statistics of the noise, it is clear that it may influence the trajectory X' 
of the dynamical system. Indeed, if yf, the nominal input to a neuron, is sufficiently 
close to zero, then even a small amount of noise may change the state xf of that 
neuron. As we saw in earlier sections this implies that the ensuing trajectory will 
diverge from the trajectory of the same system with the same inputs and no noise 
or the same inputs and a different realization of the same noise process. This is 
shown in the left panel of Figure 3. On the other hand, if yf is far from zero, then 
xf will not change even with large amounts of noise. This raises the possibility 
that, if a DAL is appropriately designed, it may exhibit a high degree of robustness 
to noise. Ideally, for any given initial condition and input, and for any E, there 
exists a constant Yo > 0 such that any initial condition and input in a Yo-ball 
around the original input and initial condition will produce trajectories that differ 
at most by E. Clearly, if E = 0 (i.e. the trajectory is required to be identical to 
the one of the noiseless system) then all trajectories of the system must coincide, 
not very useful. Similarly, if E <~ Yo the map will not spread different inputs. 
Therefore, this formulation of the problem does not have a satisfactory solution. 
One may, however, consider a weaker requirement. If the total number of patterns 
to be discriminated is not too large (probably 10-1000 in the case of olfaction) one 
could think of requiring noise robustness only for the trajectories X'that are specific 
to those patterns. We therefore explored whether it was in principle possible to 
stabilize trajectories corresponding to different odor presentations rather than all 
trajectories. 

We wish to change the connection weights A, B and thresholds T so that the network 
is robust with respect to noise around a given trajectory X'(ii). In order to achieve 
this we wish to ensure that at no time t neuron i has an input that is close to the 
threshold. If neuron i is not firing at time t (i.e. xf = 0) then its input must be 
comfortably less than zero (i.e. for some constant Yo > 0, yf < -Yo) and viceversa 
for xf = 1. We do so by minimizing an appropriate cost function: call g(.) an 
appropriate penalty function, e.g. g(y) = exp(y/yo) , then the cost of neuron i at 
time t if xf = 0 is Cf = g(yf) and if xf = 1 then Cf = g( -yf). Therefore: 

cf g( (1 - 2xDyf) 
C(A,B,T) LLCf 

The minimization may proceed by gradient descent. The equations for the gradient 
are: 

aCf 
--' aAij 

ayf 
aAij 

similarly, 

ayf 
aBij 
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Figure 3: Robustness of trajectories to noise resulting from network learning. (Left) 
Pattern spreading in a DAL before learning. Each curve corresponds to the divergence 
rate between 10 identical trajectories in the presence of 5% gaussian synaptic noise added 
to each active presynaptic synapse. All patterns achieve maximum spreading in 9-10 
steps as also shown in Figure 1. (Right) The divergence rate of the same trajectories after 
learning the first 10 steps of each trajectory. Each trajectory was learned sequentially, with 
the trajectory labelled 1 learned first. Note that trajectories learned later, for instance 
trajectory 20, diverge more slowly than earlier learned trajectories. Thus, the trajectories 
learned earlier are forgotten while more recently acquired trajectories are maintained. 
Furthermore, the trajectories maintain their stereotyped ability to decorrelate both after 
they are forgotten (e.g. trajectory 8) and after the 10 step learning period is over (e.g. 
trajectory 20). Untrained trajectories behave the same as trajectories in the left panel. 

-1 

In Figure 3 the results of one learning experiment are shown. Before learning all 
trajectories are susceptible to synaptic noise. After learning, those trajectories 
learned last exhibit robustness to noise, while trajectories learned earlier are slowly 
forgotten. We can compare each learned trajectory to a curve in multi-dimensional 
space with a 'robustness pipe' surrounding it. Any points lying within this pipe 
will be part of trajectories that remain within the pipe. In the case of olfactory 
processing, different odors correspond to unique trajectories, while trajectories lying 
within a common pipe correspond to the same input odor presentation. 

A few details on the experiment: The network contained 2048 neurons, half of 
which were excitatory and the other half inhibitory. The values of the constants 
were: c = 0.08, aE = 1, a[ = 1.5, T = 7.2, and the mean firing rate was set at about 
.05. The optimization took 60 gradient-descent steps. 

5 Discussion and Conclusions 

Sparsely connected networks of neurons have 'chaotic' properties which may be 
used for equalizing a set of patterns in order to make their classification easier. In 
studying the properties of such networks we extend previous results on networks 
with 00 neurons by van Vreeswijk and Sompolinsky to the case of small number 
of neurons. We also provide techniques for designing networks that have desired 
average properties. Moreover, we propose a learning technique to make the net
work immune to noise around chosen trajectories while preserving the equalization 
property elsewhere. 



A number of issues are left open. A precise characterization of the effects of the DAL 
on the distribution of the input parameters, and the consequent improvement in the 
ease of pattern classification is still missing. The geometry of the map implemented 
by the DAL is also unclear. Finally, it would be useful to obtain a quantitative 
estimate for the 'capacity' of the DAL, i.e. the number of trajectories which can be 
learned in any given network before older trajectories are forgotten. 
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