
Critical Lines in Symmetry of Mixture Models
and its Application to Component Splitting

Kenji Fukumizu
Institute of Statistical

Mathematics
Tokyo 106-8569 Japan
fukumizu@ism.ac.jp

Shotaro Akaho
AIST

Tsukuba 305-8568 Japan
s.akaho@aist.go.jp

Shun-ichi Amari
RIKEN

Wako 351-0198 Japan
amari@brain.riken.go.jp

Abstract

We show the existence of critical points as lines for the likelihood func-
tion of mixture-type models. They are given by embedding of a critical
point for models with less components. A sufficient condition that the
critical line gives local maxima or saddle points is also derived. Based
on this fact, a component-split method is proposed for a mixture of Gaus-
sian components, and its effectiveness is verified through experiments.

1 Introduction

The likelihood function of a mixture model often has a complex shape so that calculation
of an estimator can be difficult, whether the maximum likelihood or Bayesian approach
is used. In the maximum likelihood estimation, convergence of the EM algorithm to the
global maximum is not guaranteed, while it is a standard method. Investigation of the like-
lihood function for mixture models is important to develop effective methods for learning.

This paper discusses the critical points of the likelihood function for mixture-type models
by analyzing their hierarchical symmetric structure. As generalization of [1], we show that,
given a critical point of the likelihood for the model with (H − 1) components, duplication
of any of the components gives critical points as lines for the model with H components.
We call them critical lines of mixture models. We derive also a sufficient condition that
the critical lines give maxima or saddle points of the larger model, and show that given a
maximum of the likelihood for a mixture of Gaussian components, an appropriate split of
any component always gives an ascending direction of the likelihood. Based on this theory,
we propose a stable method of splitting a component, which works effectively with the
EM optimization for avoiding the dependency on the initial condition and improving the
optimization. The usefulness of the algorithm is verified through experiments.

2 Hierarchical Symmetry and Critical Lines of Mixture Models

2.1 Symmetry of Mixture models

Suppose fH(x | θ(H)) is a mixture model with H components, defined by

fH(x | θ(H)) =
∑H

j=1cj p(x |βj), cj = αj/(α1 + · · · + αH), (1)



where p(x |β) is a probability density function with a parameter β. We write, for simplicity,
α(H) = (α1, . . . , αH), β(H) = (β1, . . . , βH), and θ(H) = (α(H);β(H)).

The key of our discussion is the following two symmetric properties, which are satisfied by
mixture models;

(S-1) fH(x | α(H);β(H−2), βH−1, βH−1) = fH−1(x |α(H−2), αH−1 + αH ;β(H−1)).

(S-2) There exists a function A(α) such that for j = H − 1 and H ,
∂fH

∂βj

(x |α(H);β(H−2), βH−1, βH−1) =
αj

A(α)

∂fH−1

∂βH−1
(x |α(H−2), αH−1 + αH ;β(H−1)).

In mixture models, the function A(α) is simply given by A(α) = α1 + · · · + αH .

Hereafter, we discuss in general a model with the assumptions (S-1) and (S-2). The results
in Sections 2.1 and 2.2 depend only on these assumptions 1. While in mixture models
similar conditions are satisfied with any choices of two components, we describe only the
case of H − 1 and H just for simplicity. We write ΘH for the space of the parameter θ(H).

Another example which satisfies (S-1) and (S-2) is Latent Dirichlet Allocation (LDA,
[2]), which models data of a group structure (e.g. document as a set of words). For
x = (x1, . . . , xM ), LDA with H components is defined by

fH(x |θ(H)) =

∫

∆H−1

DH(u (H)|α(H))
∏M

ν=1

(∑H
j=1ujp(xν |βj)

)
du (H), (2)

where DH(u (H)|α(H)) =
Γ(
∑

j
αj)∏

j
Γ(αj)

∏H
j=1 u

αj−1
j is the Dirichlet distribution over the (H−

1)-dimensional simplex ∆H−1. It is easy to see (S-1) and (S-2) hold for LDA by using
Lemma 6 in Appendix. LDA includes mixture models eq.(1) as the special case of M = 1.

It is straightforward from (S-1) that, given a parameter θ(H−1) = (γ(H−1);η(H−1)) of the
model with (H − 1) components and a scalar λ, the parameter θλ ∈ ΘH defined by

αj = γj , βj = ηj (1 ≤ j ≤ H − 2)

αH−1 = λγH−1, αH = (1 − λ)γH−1, βH−1 = βH = ηH−1
(3)

gives the same function as fH−1(x |θ(H−1)). In mixture models/LDA, this corresponds to
duplication of the (H − 1)-th component with partitioning the mixing/Dirichlet parameter
in the ratio λ : (1 − λ). Since λ is arbitrary, a point in the smaller model is embedded into
the larger model as a line in the parameter space ΘH . This implies that the parameter to
realize fH−1(x |θ(H−1)) lacks identifiability in ΘH . Such singular structure of a model
causes various interesting phenomena in estimation, learning, and generalization ([3]).

2.2 Critical Lines – Embedding of a Critical Point

Given a sample {X(1), . . . , X(N)}, we define an objective function for learning by

LH(θ(H)) =
∑N

n=1Ωn(fH(X(n) | θ(H))), (4)

where Ωn(f) are differentiable functions, which may depend on n. The objective of learn-
ing is to maximize LH . If Ωn(f) = log f for all n, maximization of LH(θ(H)) is equal to
the maximum likelihood estimation.

Suppose θ
(H−1)
∗ = (γ∗

1 , . . . , γ∗
H−1; η

∗
1 , . . . , η∗

H−1) is a critical point of LH−1(θ
(H−1)),

that is, ∂LH−1

∂θ(H−1) (θ
(H−1)
∗ ) = 0. Embedding of this point into ΘH gives a critical line;

1The results do not require that p(x |β) is a density function. Thus, they can be easily extended
to function fitting in regression, which gives the results on multilayer neural networks in [1].



Theorem 1 (Critical Line). Suppose that a model satisfies (S-1) and (S-2). Let θ
(H−1)
∗

be a critical point of LH−1 with γ∗
H−1 6= 0, and θλ be a parameter given by eq.(3) for

θ
(H−1)
∗ . Then, θλ is a critical point of LH(θ(H)) for all λ.

Proof. Although this is essentially the same as Theorem 1 in [1], the following proof gives
better intuition. Let (s, t; ζ, ξ) be reparametrization of (αH−1, αH ;βH−1, βH), defined by

s = αH−1 + αH , t = αH−1 − αH , βH−1 = ζ + αHξ, βH = ζ − αH−1ξ. (5)
This is a one-to-one correspondence, if αH−1 + αH 6= 0. Note that ξ = 0 is equiv-
alent to the condition βH−1 = βH . Let ω = (α(H−2), s, t; β(H−2), ζ, ξ) be the
new coordinate, `H(ω) be the objective function eq.(4) under this parametrization, and
ωλ be the parameter corresponding to θλ. Since we have, by definition, `H(ω) =
LH(α(H−2), s+t

2 , s−t
2 ;β(H−2), ζ + s−t

2 ξ, ζ − s+t
2 ξ), the condition (S-1) means

`H(α(H−2), s, t; β(H−2), ζ, 0) = LH−1(α
(H−2), s;β(H−2), ζ). (6)

Then, it is clear that the first derivatives of `H at ωλ with respect to α(H−2), s,β(H−2),
and ζ are equal to those of LH−1(θ

(H−1)) at θ
(H−1)
∗ , and they are zero. The derivative

∂`H(ωλ)/∂t vanishes from eq.(6), and ∂`H(ωλ)/∂ξ = 0 from following Lemma 2.

Lemma 2. Let H be a hyperplane given by {ω | ξ = 0}. Then, for all ωo ∈ H, we have
∂fH

∂ξ
(x | ωo) = 0. (7)

Proof. Straightforward from the assumption (S-2) and ∂
∂ξ

= αH
∂

∂βH−1
− αH−1

∂
∂βH

.

Given that a maximum of LH is larger than that of LH−1, Theorem 1 implies that the
function LH always has critical points which are not global maximum. Those points lie on
lines in the parameter space. Further embedding of the critical lines into larger models gives
high-dimensional critical planes in the parameter space. This property is very general, and
in LDA and mixture models we do not need any assumptions on p(x |β). In these models,
by the permutation symmetry of components, there are many choices for embedding, which
induces many critical lines and planes for LH .

2.3 Embedding of a Maximum Point in LDA and Mixture Models

The next question is whether or not the critical lines from a maximum of LH−1 gives
maxima of LH . The answer requires information on the second derivatives, and depends
on models. We show a general result on LDA, and that on mixture models as its corollary.

Theorem 3. Suppose that the model is LDA defined by eq.(2). Let θ
(H−1)
∗ be an isolated

maximum point of LH−1, and θλ be its embedding given by eq.(3). Define a symmetric
matrix R of the size dimβ by

R =
∑N

n=1Ω
′
n(fH−1(X

(n) |θ
(H−1)
∗ ))

{∑M
µ=1I

(n)
µ

∂2p(X
(n)
µ | η∗

H−1)

∂β∂β

+ 1∑H−1
j=1 γ∗

j
+1

∑M
µ=1

∑M
τ=1
τ 6=µ

J (n)
µ,τ

∂p(X
(n)
µ | η∗

H−1)

∂β

∂p(X
(n)
τ | η∗

H−1)

∂β

}
,

where Ω′(f) denotes the derivative of Ω(f) w.r.t. f , and

I(n)
µ =

∫

∆H−2

DH−1(u | γ∗
1 , . . . , γ∗

H−2, γ
∗
H−1 + 1)

∏

ν 6=µ

(∑H−1
j=1 ujp(X(n)

ν |βj)
)
du (H−1),

J (n)
µ,τ =

∫

∆H−2

DH−1(u | γ∗
1 , . . . , γ∗

H−2, γ
∗
H−1 + 2)

∏

ν 6=µ,τ

(∑H−1
j=1 ujp(X(n)

ν |βj)
)
du (H−1).



Then, we have
(i) If R is negative definite, the parameter θλ is a maximum of LH for all λ ∈ (0, 1).
(ii) If R has a positive eigenvalue, the parameter θλ is a saddle point for all λ ∈ (0, 1).

Remark: The conditions on R depend only on the parameter θ
(H−1)
∗ .

Proof. We use the parametrization ω defined by eq.(5). For each t, let Ht be a hyperplane
with t fixed, and L̃H,t be the function LH restricted on Ht. The hyperplane Ht is a slice
transversal to the critical line, along which LH has the same value. Therefore, if the Hessian
matrix of L̃H,t on Ht is negative definite at the intersection ωλ (λ = (t + 1)/2), the point
is a maximum of LH , and if the Hessian has a positive eigenvalue, ωλ is a saddle point.

Since in ω coordinate we have L̃H,t(α
(H−1), s;β(H−1), ζ, 0) = LH−1(α

(H−1), s;

β(H−1), ζ), the Hessian of L̃H,t at ωλ is given by

HessL̃H,t(ωλ) =

(
HessLH−1(θ

(H−1)
∗ ) O

O
∂2L̃H,t(ωλ)

∂ξ∂ξ

)
. (8)

The off-diagonal blocks are zero, because we have ∂2L̃H,t(ωλ)
∂ξ∂ωa

= 0 for ωa 6= ξ from

Lemma 2. By assumption, HessLH−1(θ
(H−1)
∗ ) is negative definite. Noting that the terms

including ∂fH(X(n);θλ)/∂ξ vanish from Lemma 2, it is easy to obtain ∂2L̃H,t(ωλ)
∂ξ∂ξ

=

λ(1 − λ)(γ∗
H−1)

3/(
∑H−1

j=1 γ∗
j ) × R by using Lemma 6 and the definition of ξ.

By setting M = 1 in LDA model, we have the sufficient conditions for mixture models.

Corollary 4. For a mixture model, the same assertions as Theorem 3 hold for

R̃ =
∑N

n=1Ω
′
n(fH−1(X

(n) |θ
(H−1)
∗ ))

∂2p(X(n) | η∗
H−1)

∂β∂β
. (9)

Proof. For M = 1, J
(n)
µ,τ = 0 and I(n) = γ∗

H−1/
∑H−1

j=1 γ∗
j . The assertion is obvious.

2.4 Critical Lines in Various Models

We further investigate the critical lines for specific models. Hereafter, we consider the
maximum likelihood estimation, setting Ωn(f) = log f for all n.

Gaussian Mixture, Mixture of Factor Analyzers, and Mixture of PCA
Assume that each component is the D-dimensional Gaussian density with mean µ and
variance-covariance matrix V as parameters, which is denoted by φ(x ;µ, V ). The matrix
R̃ in eq.(9) has a form R̃ =

( S2 S3

ST
3 S4

)
, where S2, S3, and S4 correspond to the second

derivatives with respect to (µ,µ), (µ, V ), and (V, V ), respectively. It is well known that the
second derivative ∂2φ/∂µ∂µ of a Gaussian density is equal to the first derivative ∂φ/∂V .
Then, S2 is equal to zero by the condition of a critical point. If the data is randomly
generated, S3 and S4 are of full rank almost surely. This type of matrix necessarily has
a positive eigenvalue. It is not difficult to extend this discussion to models with scalar or
diagonal variance-covariance matrices as variable parameters.

Similar arguments hold for mixture of factor analyzers (MFA, [4]) and mixture of prob-
abilistic PCA (MPCA, [5]). In factor analyzers or probabilistic PCA, the variance-
covariance matrix is restricted to the form

V = FFT + S,



where F is a factor loading of rank k and S is a diagonal or scalar matrix. Because the

first derivative of φ(x ;µ, FF T + S) with respect to F is ∂φ(x;µ,FF T +S)
∂V

F , the block in
R̃ corresponding to the second derivatives on µ is not of full rank. In a similar manner to
Gaussian mixtures, R̃ has a positive eigenvalue. In summary, we have the following

Theorem 5. Suppose that a model is Gaussian mixture, MFA, or MPCA. If R̃ is of full
rank, every point θλ on the critical line is a saddle point of LH .

This theorem means that if we have the maximum likelihood estimator for H − 1 com-
ponents, we can find an ascending direction of likelihood by splitting a component and
modifying their means and variance-covariance matrices in the direction of the positive
eigenvector. This leads a component splitting method, which will be shown in Section 3.1.

Latent Dirichlet Allocation
We consider LDA with multinomial components. Using the D-dimensional random vector
x = (xa) ∈ {(1, 0, . . . , 0)T , . . . , (0, . . . , 0, 1)T }, which indicates a chosen element, the
multinomial distribution over D elements is expressed as an exponential family by

p(x |β) =
∏D

a=1(pa)xa = exp{
∑D−1

a=1 βaxa − log(1 +
∑D−1

a=1 eβa

)},

where pa is the expectation of xa, and β ∈ R
D−1 is a natural parameter given by βa =

log(pa/pD). It is easy to obtain

R =
∑N

n=1Ω
′(fH−1(X

(n) |θ
(H−1)
∗ ))

∑M
µ=1

∑
τ 6=µJ (n)

µ,τ p(X(n)
µ | γ∗

H−1)p(X(n)
τ | γ∗

H−1)

× (X̃(n)
µ − p∗(H−1))(X̃

(n)
τ − p∗(H−1))

T , (10)

where X̃
(n)
ν is the truncated (D − 1)-dimensional vector, and p∗

(H−1) ∈ (0, 1)D−1 is the

expectation parameter for (H − 1)-th component of θ
(H−1)
∗ .

In general, J
(n)
µ,τ are intractable in large problems. We explain a simple case of H = 2

and M = D. Let p̂ be the frequency vector of the D elements, which is the maximum
likelihood estimator for the one multinomial model. In this case, we have J

(n)
µ,τ = 1 and

R =
∑N

n=1

{∑M
µ,τ=1(X̃

(n)
µ − p̂)(X̃(n)

τ − p̂)T −
∑M

µ=1(X̃
(n)
µ − p̂)(X̃(n)

µ − p̂)T
}
.

First, suppose we have a data set with X
(n)
ν = eν for all n and 1 ≤ ν ≤ D = M , where

ej is the D-dimensional vector with the j-th component 1 and others zero. Then, we have

p̂ = (1/D, . . . , 1/D) and
∑D

µ=1(X̃
(n)
µ − p̂) = 0, which means R < 0. The critical line

gives maxima for LDA with H = 2. Next, suppose the data consists of D groups, and every
data in the j-th group is given by X

(n)
ν = ej . While we have again p̂ = (1/D, . . . , 1/D),

the matrix R is
∑D

j=1(N/D) × D(D − 1)(ej − p̂)(ej − p̂)T > 0. Thus, all the points
on the critical lines are saddle points. These examples explain two extreme cases; in the
former we have no advantage in using two components because all the data X (n) are the
same, while in the latter the multiple components fits better to the variety of X (n).

3 Component Splitting Method in Mixture of Gaussian Components

3.1 EM with Component Splitting

It is well known that the EM algorithm suffers from strong dependency on initialization. In
addition, because the likelihood of a mixture of Gaussian components is not upper bounded



Algorithm 1 : EM with component splitting for Gaussian mixture
1. Initialization: calculate the sample mean µ1 and variance-covariance matrix V1.

2. H := 1.

3. For all 1 ≤ h ≤ H , diagonalize Vh∗ as Vh∗ = UhΛhUT
h , and calculate R̃h

according to eq.(12) in Appendix.

4. For 1 ≤ h ≤ H , calculate the eigenvector (rh,Wh) of R̃h corresponding to the
largest eigenvalue.

5. For 1 ≤ h ≤ H , optimize β by line search to maximize the likelihood for

ch = 1
2ch∗, µh = µh∗ − βrh, Vh = Uhe−βWhΛhe−βWhUT

h ,

cH+1 = 1
2ch∗, µH+1 = µh∗ + βrh, VH+1 = UheβWhΛheβWhUT

h .
(11)

Let βo
h be the optimizer and Lh be the likelihood.

6. For h† := arg maxh Lh, split h†-th component according to eq.(11) with βo
h† .

7. Optimize the parameter θ(H+1) using EM algorithm. Let θ
(H+1)
∗ be the result.

8. If H + 1 = MAX H, then END. Otherwise, H := H + 1 and go to 3.
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Figure 1: Spiral data. In (b) and (c), the lines represent the factor loading vectors Fh and
−Fh at the mean values, and the radius of a sphere is the scalar part of the variance.

for small variances, we should use an optimization technique to give an appropriate maxi-
mum. Sequential split of components can give a solution to these problems. From Theorem
5, a stable and effective way of splitting a Gaussian component is derived to increase the
likelihood. We propose EM with component splitting, which adds a component one by one
after maximizing the likelihood at each size. Ueda et al ([6]) proposes Split and Merge EM,
in which the components repeat split and merge in a triplet, keeping the total number fixed.
While their method works well, it requires a large number of trials of EM for candidate
triplets, and the splitting method is heuristic. Our splitting method is well based on theory,
and EM with splitting gives a series of estimators for all model sizes in a single run.

Algorithm 1 is the procedure of learning. We show only the case of mixture of Gaussian.
The exact algorithm for the mixture of PCA/FA will be shown in a forthcoming paper.
It is noteworthy that in splitting a component, not only the means but also the variance-
covariance matrices must be modified. The simple additive rule Vnew = Vold + ∆V tends
to fail, because it may make the matrix non-positive definite. To solve this problem, we
use Lie algebra expression to add a vector of ascending direction. Let V = UΛUT be
the diagonalization of V , and consider V (W ) = UeW ΛeW UT for a symmetric matrix



W . This gives a local coordinate of the positive definite matrices around V = V (0).
Modification of V through W gives a stable way of updating variance-covariance matrices.

3.2 Experimental results

We show through experiments how the proposed EM with component splitting effectively
maximizing the likelihood. In the first experiment, the mixture of PCA with 8 components
of rank 1 is employed to fit the synthesized 150 data generated along a piecewise linear
spiral (Fig.1). Table 1-(a) shows the results over 30 trials with different random numbers.
We use the on-line EM algorithm ([7]), presenting data one-by-one in a random order. The
EM with random initialization reaches the best state (Fig.1-(b)) only 6 times, while EM
with component splitting achieves it 26 times. Fig.1-(c) shows an example of failure.

20 40 60 80 100 120 140 160
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Figure 2: ”Lenna”.

The next experiment is an image compression prob-
lem, in which the image ”Lenna” of 160×160 pixels
(Fig.2) is used. The image is partitioned into 20×20
blocks of 8×8 pixels, which are regarded as 400 data
in R

64. We use the mixture of PCA with 10 com-
ponents of rank 4, and obtain a compressed image by
X̂ = Fh(FT

h Fh)−1FT
h X , where X is a 64 dimensional

block and h indicates the component of the shortest
Euclidean distance ‖X − µh‖. Table 1-(b) shows the
residual square error (RSE),

∑400
j=1 ‖Xj − X̂j‖

2, which
shows the quality of the compression. In both experi-
ments, we can see the better optimization performance
of the proposed algorithm.

(a) Likelihood for spiral data (30 runs) (b) RSE for ”Lenna” (10 runs)
EM EMCS

Best -534.9 (6 times) -534.9 (26 times)
Worst -648.1 -587.9

Av. -583.9 -541.3

×104 EM EMCS
Best 5.94 5.38

Worst 6.40 6.12
Av. 6.15 5.78

Table 1: Experimental results. EM is the conventional EM with random initialization, and
EMCS is the proposed EM with component splitting.

4 Discussions

In EM with component splitting, we obtain the estimators up to the specified number of
components. We need a model selection technique to choose the best one, which is another
important problem. We do not discuss it in this paper, because our method can be combined
with many techniques, which select a model after obtaining the estimators. However, we
should note that some famous methods such as AIC and MDL, which are based on statisti-
cal asymptotic theory, cannot be applied to mixture models because of the unidentifiability
of the parameter. Further studies are necessary on model selection for mixture models.

Although the computation to calculate the matrix R is not cheap in a mixture of Gaussian
components, the full variance-covariance matrices are not always necessary in practical
problems. It can save the computation drastically. Also, some methods to reduce the
computational cost should be more investigated.

In selecting a component to split, we try line search for all the components and choose the
one giving the largest likelihood. While this works well in our experiments, the proposed
method of component splitting can be combined with other criterions to select a component.



One of them is to select the component giving the largest eigenvalue of R̃h. In Gaussian
mixture models, this is very natural; the block of the second derivatives w.r.t. V in R̃ is
equal to the weighted fourth cummulant, and a component with a large cummulant should
be split. However, in mixture of FA and PCA, this does not necessarily work well, because
the decomposition V = FF T + S does not give a natural parametrization. Although we
have discussed only local properties, a method incorporating global information might be
more preferable. These are left as a future work.

Appendix

Lemma 6. Suppose ϕH(u (H);β(H)) satisfies the assumption (S-1). Define
IH(α(H);β(H)) =

∫
∆H−1

ϕ(u (H);β(H))DH(u (H) |α(H))du (H). Then, IH also satis-
fies (S-1);

IH(α(H);β(H−2), βH−1, βH−1) = IH−1(α
(H−2), αH−1 + αH ;β(H−1)).

Proof. Direct calculation.

Matrix R̃h for Gaussian mixture

We omit the index h for simplicity, and use Einstein’s convention. Let U = (u1, . . . , uD)
and Λ = diag(λ1, . . . , λD). For V (W ) = UeW ΛeW UT , we have ∂V (O)/∂Wab =
(λa+(1−δab)λb)(uauT

b +ubu
T
a ), where δab is Kronecker’s delta. Let T (3) and T (4) be the

weighted third and fourth sample moments, respectively, with weights φ(x(n);µ∗,V∗)

f(H−1)(x(n);θ
(H−1)
∗ )

.

T̃(3) and T̃(4) are defined by T̃ abc
(3) = V apV bqV crT

(3)
pqr and T̃ abcd

(4) = V apV bqV crV dsT
(4)
pqrs,

respectively, where V ap is the (ap)-component of V −1. Direct calculation leads that the

matrix R̃ =
(

O B
BT C

)
, where the decomposition corresponds to β = (µ,W ), is given by

Bµa,Wbc
= (λb + (1 − δbc)λc)u

T
b T̃ ··a

(3)uc

CWabWcd
= (λaubu

T
a + (1 − δab)λbuauT

b )pq(λcudu
T
c + (1 − δcd)λducu

T
d )rs

×
{
T̃ pqrs

(4) − (V pqV rs + V prV qs + V psV qr)
}
.

(12)

In the above equation, T̃ ··a
(3) is the D × D matrix with fixed a for T̃ bca

(3) .
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