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Abstract

We present analog neuromorphic circuits for implementing bistable syn-
apses with spike-timing-dependent plasticity (STDP) properties. In these
types of synapses, the short-term dynamics of the synaptic efficacies are
governed by the relative timing of the pre- and post-synaptic spikes,
while on long time scales the efficacies tend asymptotically to either a
potentiated state or to a depressed one. We fabricated a prototype VLSI
chip containing a network of integrate and fire neurons interconnected
via bistable STDP synapses. Test results from this chip demonstrate the
synapse’s STDP learning properties, and its long-term bistable charac-
teristics.

1 Introduction

Most artificial neural network algorithms based on Hebbian learning use correlations of
mean rate signals to increase the synaptic efficacies between connected neurons. To pre-
vent uncontrolled growth of synaptic efficacies, these algorithms usually incorporate also
weight normalization constraints, that are often not biophysically realistic. Recently an
alternative class of competitive Hebbian learning algorithms has been proposed based on a
spike-timing-dependent plasticity (STDP) mechanism [1]. It has been argued that the STDP
mechanism can automatically, and in a biologically plausible way, balance the strengths of
synaptic efficacies, thus preserving the benefits of both weight normalization and corre-
lation based learning rules [16]. In STDP the precise timing of spikes generated by the
neurons play an important role. If a pre-synaptic spike arrives at the synaptic terminal be-
fore a post-synaptic spike is emitted, within a critical time window, the synaptic efficacy
is increased. Conversely if the post-synaptic spike is emitted soon before the pre-synaptic
one arrives, the synaptic efficacy is decreased.

While mean rate Hebbian learning algorithms are difficult to implement using analog cir-
cuits, spike-based learning rules map directly onto VLSI [4, 6, 7]. In this paper we present
compact analog circuits that, combined with neuromorphic integrate and fire (I&F) neurons
and synaptic circuits with realistic dynamics [8, 12, 11] implement STDP learning for short
time scales and asymptotically tend to one of two possible states on long time scales. The
circuits required to implement STDP, are described in Section 2. The circuits that imple-
ment bistability are described in Section 3. The network of I&F neurons used to measure



the properties of the bistable STDP synapse is described in Section 4.

Long term storage of synaptic efficacies

The circuits that drive the synaptic efficacy to one of two possible states on long time scales,
were implemented in order to cope with the problem of long term storage of analog values
in CMOS technology. Conventional VLSI capacitors, the devices typically used as memory
elements, are not ideal, in that they slowly loose the charge they are supposed to store, due
to leakage currents. Several solutions have been proposed for long term storage of synaptic
efficacies in analog VLSI neural networks. One of the first suggestions was to use the same
method used for dynamic RAM: to periodically refresh the stored value. This involves
though discretization of the analog value to N discrete levels, a method for comparing the
measured voltage to the N levels, and a clocked circuit to periodically refresh the value
on the capacitor. An alternative solution is to use analog-to-digital (ADC) converters, an
off chip RAM and digital-to-analog converters (DAC), but this approach requires, next
to a discretization of the value to N states, bulky ADC and DAC circuits. A more recent
suggestion is the one of using floating gate devices [5]. These devices can store very precise
analog values for an indefinite amount of time using standard CMOS technology [13], but
for spike-based learning rules they would require a control circuit (and thus large area) per
synapse. To implement dense arrays of neurons with large numbers of dendritic inputs the
synaptic circuits should be as compact as possible.

Bistable synapses

An alternative approach that uses a very small amount of area per synapse is to use bistable
synapses. These types of synapses contain minimum feature-size circuits that locally com-
pare the value of the synaptic efficacy stored on the capacitor with a fixed threshold voltage
and slowly drive that value either toward a high analog voltage or toward a low one, de-
pending on the output of the comparator (see Section 3).

The assumption that on long time scales the synaptic efficacy can only assume two values
is not too severe, for networks of neurons with large numbers of synapses. It has been
argued that also biological synapses can be indeed discrete on long time-scales. These
assumptions are compatible with experimental data [3] and are supported by experimental
evidence [15]. Also from a theoretical perspective it has been shown that the performance
of associative networks is not necessarily degraded if the dynamic range of the synaptic
efficacy is reduced even to the extreme (two stable states), provided that the transitions
between stable states are stochastic [2].

Related work

Bistable VLSI synapses in networks of I&F neurons have already been proposed in [6], but
in those circuits, the synaptic efficacy is always clamped to either a high value or a low one,
also for short-term dynamics, as opposed to our case, in which the synaptic efficacy can
assume any analog value between the two. In [7] the authors propose a spike-based learn-
ing circuit, based on a modified version of Riccati’s equation [10], in which the synaptic
efficacy is a continuous analog voltage; but their synapses require many more transistors
than the solution we propose, and do not incorporate long-term bistability. More recently
Bofill and Murray proposed circuits for implementing STDP within a framework of pulse-
based neural network circuits [4]. But, next to missing the long-term bistability properties,
their synaptic circuits require digital control signals that cannot be easily generated within
the framework of neuromorphic networks of I&F neurons [8, 12].
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Figure 1: Synaptic efficacy STDP circuit.

2 The STDP circuits

The circuit required to implement STDP in a network of I&F neurons is shown in Fig. 1.
This circuit increases or decreases the analog voltage Vw0, depending on the relative timing
of the pulses pre and /post. The voltage Vw0 is then used to set the strength of synaptic
circuits with realistic dynamics, of the type described in [11]. The pre- and post-synaptic
pulses pre and /post are generated by compact, low power I&F neurons, of the type de-
scribed in [9].

The circuit of Fig. 1 is fully symmetric: upon the arrival of a pre-synaptic pulse pre a
waveform Vpot(t) (for potentiating Vw0) is generated. Similarly, upon the arrival of a
post-synaptic pulse /post, a complementary waveform Vdep(t) (for depotentiating Vw0)
is generated. Both waveforms have a sharp onset and decay linearly with time, at a rate set
respectively by Vtp and Vtd. The pre- and post-synaptic pulses are also used to switch on
two gates (M8 and M5), that allow the currents Idep and Ipot to flow, as long as the pulses
are high, either increasing or decreasing the weight. The bias voltages Vp on transistor M6
and Vd on M7 set an upper bound for the maximum amount of current that can be injected
into or removed from the capacitor Cw. If transistors M4−M9 operate in the subthreshold
regime [13], we can compute the analytical expression of Ipot(t) and Idep(t):

Ipot(t) =
I0
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−
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UT

Vpot(t−tpre)
+ e

−
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UT

Vp
(1)

Idep(t) =
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κ
UT

Vdep(t−tpost) + e
−

κ
UT

Vd
(2)

where tpre and tpost are the times at which the pre-synaptic and post-synaptic spikes are
emitted, UT is the thermal voltage, and κ is the subthreshold slope factor [13]. The change
in synaptic efficacy is then:

{

∆Vw0 =
Ipot(tpost)

Cp
∆tspk if tpre < tpost

∆Vw0 = −
Idep(tpre)

Cd
∆tspk if tpost < tpre

(3)

where ∆tspk is the pre- and post-synaptic spike width, Cp is the parasitic capacitance of
node Vpot and Cd the one of node Vdep (not shown in Fig. 1).

In Fig. 2(a) we plot experimental data showing how ∆Vw0 changes as a function of ∆t =
tpre − tpost for different values of Vtd and Vtp. Similarly, in Fig. 2(b) we show plots
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Figure 2: Changes in synaptic efficacy, as a function of the difference between pre- and
post-synaptic spike emission times ∆t = tpre−tpost. (a) Curves obtained for four different
values of Vpot (in the left quadrant) and four different values of Vdep (in the right quadrant).
(b) Typical STDP plot, obtained by setting Vp to 4.0V and Vd to 0.6V.
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Figure 3: Changes in Vw0, in response to a sequence of pre-synaptic spikes (top trace). The
middle trace shows how the signal Vdep, triggered by the post-synaptic neuron, decreases
linearly with time. The bottom trace shows the series of digital pulses pre, generated with
every pre-synaptic spike.

of ∆Vw0 versus ∆t for three different values of Vp and three different values of Vd. As
there are four independent control biases, it is possible to set the maximum amplitude and
temporal window of influence independently for positive and negative changes in Vw0.

The data of Fig. 2 was obtained using a paired-pulse protocol similar to the one used in
physiological experiments [14]: one single pair of pre- and post-synaptic spikes was used
to measure each ∆Vw0 data point, by systematically changing the delay tpre − tpost and
by separating each stimulation session by a few hundreds of milliseconds (to allow the
signals to return to their resting steady-state). Unlike the biological experiments, in our
VLSI setup it is possible to evaluate the effect of multiple pulses on the synaptic efficacy,
for very long successive stimulation sessions, monitoring all the internal state variables
and signals involved in the process. In Fig. 3 we show the effect of multiple pre-synaptic
spikes, succeeding a post-synaptic one, plotting a trace of the voltage Vw0, together with the
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Figure 4: Bistability circuit. Depending on Vw0−Vthr, the comparator drives Vw0 to either
Vhigh or Vlow. The rate at which the circuit drives Vw0 toward the asymptote is controlled
by Vleak and imposed by transistors M2 and M4.

“internal” signal Vdep, generated by the post-synaptic spike, and the pulses pre, generated
by the per-synaptic neuron. Note how the change in Vw0 is a positive one, when the post-
synaptic spike follows a pre-synaptic one, at t = 0.5ms, and is negative when a series
of pre-synaptic spikes follows the post-synaptic one. The effect of subsequent pre pulses
following the first post-/pre-synaptic pair is additive, and decreases with time as in Fig. 2.
As expected, the anti-causal relationship between pre- and post-synaptic neurons has the
net effect of decreasing the synaptic efficacy.

3 The bistability circuit

The bistability circuit, shown in Fig. 4, drives the voltage Vw0 toward one of two possible
states: Vhigh (if Vw0 > Vthr), or Vlow (if Vw0 < Vthr). The signal Vthr is a threshold
voltage that can be set externally. The circuit comprises a comparator, and a mixed-mode
analog-digital leakage circuit. The comparator is a five transistor transconductance ampli-
fier [13] that can be designed using minimum feature-size transistors. The leakage circuit
contains two gates that act as digital switches (M5, M6) and four transistors that set the
two stable state asymptotes Vhigh and Vlow and that, together with the bias voltage Vleak ,
determine the rate at which Vw0 approaches the asymptotes. The bistability circuit drives
Vw0 in two different ways, depending on how large is the distance between the value of Vw0

itself and the asymptote. If |Vw0−Vas| > 4UT the bistability circuit drives Vw0 toward Vas

linearly, where Vas represents either Vlow or Vhigh, depending on the sign of (Vw0 −Vthr):
{

Vw0(t) = Vw0(0) + Ileak

Cw
t if Vw0 > Vthr

Vw0(t) = Vw0(0) − Ileak

Cw
t if Vw0 < Vthr

(4)

where Cw is the capacitor of Fig. 1 and

Ileak = I0e
κVleak−Vlow

UT

As Vw0 gets close to the asymptote and |Vw0−Vas| < 4UT , transistors M2 or M4 of Fig. 4
go out of saturation and Vw0 begins to approach the asymptote exponentially:

{

Vw0(t) = Vhigh − Vw0(0)e
−

Ileak
CwUT

t if Vw0 > Vthr

Vw0(t) = Vlow + Vw0(0)e
−

Ileak
CwUT

t if Vw0 < Vthr

(5)

On long time scales the dynamics of Vw0 are governed by the bistability circuit, while on
short time-scales they are governed by the STDP circuits and the precise timing of pre- and
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Figure 5: Synaptic efficacy bistability. Transition of Vw0 from below threshold to above
threshold (Vthr = 1.52V ), with leakage rate set by Vleak = 0.25V and pre- and post-
synaptic neurons stimulated in a way to increase Vw0.
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Figure 6: Network of leaky I&F neurons with bistable STDP excitatory synapses and in-
hibitory synapses. The large circles symbolize I&F neurons, the small empty ones bistable
STDP excitatory synapses, and the small bars non-plastic inhibitory synapses. The arrows
in the circles indicate the possibility to inject current from an external source, to stimulate
the neurons.

post-synaptic spikes. If the STDP short-term dynamics drive Vw0 above threshold we say
that long-term potentiation (LTP) had been induced. And if the short-term dynamics drive
Vw0 below threshold, we say that long-term depression (LTD) has been induced.

In Fig. 5 we show how the synaptic efficacy Vw0 changes upon induction of LTP, while
stimulating the pre- and post-synaptic neurons with uniformly distributed spike trains. The
asymptote Vlow was set to zero, and Vhigh to 2.75V. The pre- and post-synaptic neurons
were injected with constant DC currents in a way to increase Vw0, on average. As shown,
the two asymptotes Vlow and Vhigh act as two attractors, or stable equilibrium points,
whereas the threshold voltage Vthr acts as an unstable equilibrium point. If the synap-
tic efficacy is below threshold the short-term dynamics have to fight against the long-term
bistability effect, to increase Vw0. But as soon as Vw0 crosses the threshold, the bistability
circuit switches, the effects of the short-term dynamics are reinforced by the asymptotic
drive, and Vw0 is quickly driven toward Vhigh.

4 A network of integrate and fire neurons

The prototype chip that we used to test the bistable STDP circuits presented in this paper,
contains a symmetric network of leaky I&F neurons [9] (see Fig. 6). The experimental data
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Figure 7: Membrane potentials of pre- and post-synaptic neurons (bottom and middle traces
respectively) and synaptic efficacy values (top traces). (a) Changes in Vw0 for low synap-
tic efficacy values (Vhigh = 2.1V) and no bistability leakage currents (Vleak = 0). (b)
Changes in Vw0 for high synaptic efficacy values (Vwh = 3.6V ) and with bistability asymp-
totic drive (Vleak = 0.25V).

of Figs. 2, 3, and 5 was obtained by injecting currents in the neurons labeled I1 and O1
and by measuring the signals from the excitatory synapse on O1. In Fig. 7 we show the
membrane potential of I1, O1, and the synaptic efficacy Vw0 of the corresponding synapse,
in two different conditions. Figure 7(a) shows the changes in Vw0 when both neurons are
stimulated but no asymptotic drive is used. As shown Vw0 strongly depends on the spike
patterns of the pre- and post-synaptic neurons. Figure 7(b) shows a scenario in which
only neuron I1 is stimulated, but in which the weight Vw0 is close to its high asymptote
(Vhigh = 3.6V) and in which there is a long-term asymptotic drive (Vleak = 0.25). Even
though the synaptic weight stays always in its potentiated state, the firing rate of O1 is not
as regular as the one of its efferent neuron. This is mainly due to the small variations of
Vw0 induced by the STDP circuit.

5 Discussion and future work

The STDP circuits presented here introduce a source of variability in the spike timing of the
I&F neurons that could be exploited for creating VLSI networks of neurons with stochastic
dynamics and for implementing spike-based stochastic learning mechanisms [2]. These
mechanisms rely on the variability of the input signals (e.g. of Poisson distributed spike
trains) and on their precise spike-timing in order to induce LTP or LTD only to a small
specific sub-set of the synapses stimulated. In future experiments we will characterize the
properties of the bistable STDP synapse in response to Poisson distributed spike trains, and
measure transition probabilities as functions of input statistics and circuit parameters.

We presented compact neuromorphic circuits for implementing bistable STDP synapses in
VLSI networks of I&F neurons, and showed data from a prototype chip. We demonstrated
how these types of synapses can either store their LTP or LTD state for long-term, or switch
state depending on the precise timing of the pre- and post-synaptic spikes. In the near
future, we plan to use the simple network of I&F neurons of Fig. 6, present on the prototype
chip, to analyze the effect of bistable STDP plasticity at a network level. On the long term,



we plan to design a larger chip with these circuits to implement a re-configurable network
of I&F neurons of O(100) neurons and O(1000) synapses, and use it as a real-time tool for
investigating the computational properties of competitive networks and selective attention
models.
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