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Abstract

We propose a new algorithm to estimate the intrinsic dimension of data
sets. The method is based on geometric properties of the data and re-
quires neither parametric assumptions on the data generating model nor
input parameters to set. The method is compared to a similar, widely-
used algorithm from the same family of geometric techniques. Experi-
ments show that our method is more robust in terms of the data generating
distribution and more reliable in the presence of noise.

1 Introduction

High-dimensional data sets have several unfortunate properties that make them hard to an-
alyze. The phenomenon that the computational and statistical efficiency of statistical tech-
niques degrade rapidly with the dimension is often referred to as the “curse of dimension-
ality”. One particular characteristic of high-dimensional spaces is that as the volumes of
constant diameter neighborhoods become large, exponentially many points are needed for
reliable density estimation. Another important problem is that as the data dimension grows,
sophisticated data structures constructed to speed up nearest neighbor searches rapidly be-
come inefficient.

Fortunately, most meaningful, real life data do not uniformly fill the spaces in which
they are represented. Rather, the data distributions are observed to concentrate to non-
linear manifolds of low intrinsic dimension. Several methods have been developed to find
low-dimensional representations of high-dimensional data, including Principal Component
Analysis (PCA), Self-Organizing Maps (SOM) [1], Multidimensional Scaling (MDS) [2],
and, more recently, Local Linear Embedding (LLE) [3] and the ISOMAP algorithm [4].
Although most of these algorithms require that the intrinsic dimension of the manifold be
explicitly set, there has been little effort devoted to design and analyze techniques that
estimate the intrinsic dimension of data in this context.

There are two principal areas where a good estimate of the intrinsic dimension can be
useful. First, as mentioned before, the estimate can be used to set input parameters of
dimension reduction algorithms. Certain methods (e.g., LLE and the ISOMAP algorithm)
also require a scale parameter that determines the size of the local neighborhoods used in
the algorithms. In this case, it is useful if the dimension estimate is provided as a function
of the scale (see Figure 1 for an intuitive example where the intrinsic dimension of the data



depends on the resolution). Nearest neighbor searching algorithms can also profit from
a good dimension estimate. The complexity of search data structures (e.g., kd-trees and
R-trees) increase exponentially with the dimension, and these methods become inefficient
if the dimension is more than about 20. Nevertheless, it was shown by Chávez et al. [5]
that the complexity increases with the intrinsic dimension of the data rather then with the
dimension of the embedding space.

Figure 1: Intrinsic dimension D at dif-
ferent resolutions. (a) At very small
scale the data looks zero-dimensional.
(b) If the scale is comparable to the
noise level, the intrinsic dimension
seems larger than expected. (c) The
“right” scale in terms of noise and cur-
vature. (d) At very large scale the global
dimension dominates.
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In this paper we present a novel method for intrinsic dimension estimation. The estimate is
based on geometric properties of the data, and requires no parameters to set. Experimental
results on both artificial and real data show that the algorithm is able to capture the scale
dependence of the intrinsic dimension. The main advantage of the method over existing
techniques is its robustness in terms of the generating distribution. The paper is organized
as follows. In Section 2 we introduce the field of intrinsic dimension estimation, and give
a short overview of existing approaches. The proposed algorithm is described in Section 3.
Experimental results are given in Section 4.

2 Intrinsic dimension estimation

Informally, the intrinsic dimension of a random vector X is usually defined as the number of
“independent” parameters needed to represent X . Although in practice this informal notion
seems to have a well-defined meaning, formally it is ambiguous due to the existence of
space-filling curves. So, instead of this informal notion, we turn to the classical concept of
topological dimension, and define the intrinsic dimension of X as the topological dimension
of the support of the distribution of X . For the definition, we need to introduce some
notions. Given a topological space X , the covering of a subset S is a collection C of open
subsets in X whose union contains S . A refinement of a covering C of S is another covering
C ′ such that each set in C ′ is contained in some set in C . The following definition is based
on the observation that a d-dimensional set can be covered by open balls such that each
point belongs to maximum (d +1) open balls.

Definition 1 A subset S of a topological space X has topological dimension Dtop (also
known as Lebesgue covering dimension) if every covering C of S has a refinement C ′ in
which every point of S belongs to at most (Dtop +1) sets in C ′, and Dtop is the smallest such
integer.

The main technical difficulty with the topological dimension is that it is computationally
difficult to estimate on a finite sample. Hence, practical methods use various other defini-
tions of the intrinsic dimension. It is common to categorize intrinsic dimension estimating
methods into two classes, projection techniques and geometric approaches.

Projection techniques explicitly construct a mapping, and usually measure the dimen-
sion by using some variants of principal component analysis. Indeed, given a set Sn =



{X1, . . . ,Xn},Xi ∈ X , i = 1, . . . ,n of data points drawn independently from the distribution
of X , probably the most obvious way to estimate the intrinsic dimension is by looking at
the eigenstructure of the covariance matrix C of Sn. In this approach, D̂pca is defined as the
number of eigenvalues of C that are larger than a given threshold. The first disadvantage of
the technique is the requirement of a threshold parameter that determines which eigenval-
ues are to discard. In addition, if the manifold is highly nonlinear, D̂pca will characterize
the global (intrinsic) dimension of the data rather than the local dimension of the manifold.
D̂pca will always overestimate Dtop; the difference depends on the level of nonlinearity of
the manifold. Finally, D̂pca can only be used if the covariance matrix of Sn can be calcu-
lated (e.g., when X = R

d). Although in Section 4 we will only consider Euclidean data
sets, there are certain applications where only a distance metric d : X ×X 7→R

+∪{0} and
the matrix of pairwise distances D = [di j] = d(xi,x j) are given.

Bruske and Sommer [6] present an approach to circumvent the second problem. Instead
of doing PCA on the original data, they first cluster the data, then construct an optimally
topology preserving map (OPTM) on the cluster centers, and finally, carry out PCA locally
on the OPTM nodes. The advantages of the method are that it works well on non-linear
data, and that it can produce dimension estimates at different resolutions. At the same time,
the threshold parameter must still be set as in PCA, moreover, other parameters, such as
the number of OPTM nodes, must also be decided by the user. The technique is similar
in spirit to the way the dimension parameter of LLE is set in [3]. The algorithm runs in
O(n2d) time (where n is the number of points and d is the embedding dimension) which
is slightly worse than the O(ndD̂pca) complexity of the fast PCA algorithm of Roweis [7]
when computing D̂pca.

Another general scheme in the family of projection techniques is to turn the dimensionality
reduction algorithm from an embedding technique into a probabilistic, generative model
[8], and optimize the dimension as any other parameter by using cross-validation in a max-
imum likelihood setting. The main disadvantage of this approach is that the dimension
estimate depends on the generative model and the particular algorithm, so if the model
does not fit the data or if the algorithm does not work well on the particular problem, the
estimate can be invalid.

The second basic approach to intrinsic dimension estimation is based on geometric proper-
ties of the data rather then projection techniques. Methods from this family usually require
neither any explicit assumption on the underlying data model, nor input parameters to set.
Most of the geometric methods use the correlation dimension from the family of fractal
dimensions due to the computational simplicity of its estimation. The formal definition is
based on the observation that in a D-dimensional set the number of pairs of points closer to
each other than r is proportional to rD.

Definition 2 Given a finite set Sn = {x1, . . . ,xn} of a metric space X , let

Cn(r) =
2

n(n−1)

n

∑
i=1

n

∑
j=i+1

I{‖xi−x j‖<r}

where IA is the indicator function of the event A. For a countable set S = {x1,x2, . . .} ⊂ X ,
the correlation integral is defined as C(r) = limn→∞ Cn(r). If the limit exists, the correlation
dimension of S is defined as

Dcorr = lim
r→0

logC(r)
logr

.

For a finite sample, the zero limit cannot be achieved so the estimation procedure usually
consists of plotting logC(r) versus logr and measuring the slope ∂ logC(r)

∂ logr of the linear part



of the curve [9, 10, 11]. To formalize this intuitive procedure, we present the following
definition.

Definition 3 The scale-dependent correlation dimension of a finite set Sn = {x1, . . . ,xn}
is

D̂corr(r1,r2) =
logC(r2)− logC(r1)

logr2− logr1
.

It is known that Dcorr ≤ Dtop and that Dcorr approximates well Dtop if the data distribution
on the manifold is nearly uniform. However, using a non-uniform distribution on the same
manifold, the correlation dimension can severely underestimate the topological dimension.
To overcome this problem, we turn to the capacity dimension, which is another member of
the fractal dimension family. For the formal definition, we need to introduce some more
concepts. Given a metric space X with distance metric d(·, ·), the r-covering number N(r)
of a set S ⊂ X is the minimum number of open balls B(x0,r) = {x ∈ X |d(x0,x) < r} whose
union is a covering of S . The following definition is based on the observation that the
covering number N(r) of a D-dimensional set is proportional to r−D.

Definition 4 The capacity dimension of a subset S of a metric space X is

Dcap =− lim
r→0

logN(r)
logr

.

The principal advantage of Dcap over Dcorr is that Dcap does not depend on the data distri-
bution on the manifold. Moreover, if both Dcap and Dtop exist (which is certainly the case
in machine learning applications), it is known that the two dimensions agree. In spite of
that, Dcap is usually discarded in practical approaches due to the high computational cost
of its estimation. The main contribution of this paper is an efficient intrinsic dimension
estimating method that is based on the capacity dimension. Experiments on both synthetic
and real data confirm that our method is much more robust in terms of the data distribution
than methods based on the correlation dimension.

3 Algorithm

Finding the covering number even of a finite set of data points is computationally difficult.
To tackle this problem, first we redefine Dcap by using packing numbers rather than cover-
ing numbers. Given a metric space X with distance metric d(·, ·), a set V ⊂ X is said to
be r-separated if d(x,y) ≥ r for all distinct x,y ∈ V . The r-packing number M(r) of a set
S ⊂ X is defined as the maximum cardinality of an r-separated subset of S . The follow-
ing proposition follows from the basic inequality between packing and covering numbers
N(r)≤M(r)≤ N(r/2).

Proposition 1 Dcap =− lim
r→0

logM(r)
logr

.

For a finite sample, the zero limit cannot be achieved so, similarly to the correlation dimen-
sion, we need to redefine the capacity dimension in a scale-dependent manner.

Definition 5 The scale-dependent capacity dimension of a finite set Sn = {x1, . . . ,xn} is

D̂cap(r1,r2) =− logM(r2)− logM(r1)

logr2− logr1
.



Finding M(r) for a data set Sn = {x1, . . . ,xn} is equivalent to finding the cardinality of a
maximum independent vertex set MI(Gr) of the graph Gr(V,E) with vertex set V = Sn
and edge set E = {(xi,x j)|d(xi,x j) < r}. This problem is known to be NP-hard. There are
results that show that for a general graph, even the approximation of MI(G) within a factor
of n1−ε, for any ε > 0, is NP-hard [12]. On the positive side, it was shown that for such
geometric graphs as Gr, MI(G) can be approximated arbitrarily well by polynomial time
algorithms [13]. However, approximating algorithms of this kind scale exponentially with
the data dimension both in terms of the quality of the approximation and the running time1

so they are of little practical use for d > 2. Hence, instead of using one of these algorithms,
we apply the following greedy approximation technique. Given a data set Sn, we start with
an empty set of centers C , and in an iteration over Sn we add to C data points that are at a
distance of at least r from all the centers in C (lines 4 to 10 in Figure 2). The estimate M̂(r)
is the cardinality of C after every point in Sn has been visited.

The procedure is designed to produce an r-packing but certainly underestimates the packing
number of the manifold, first, because we are using a finite sample, and second, because in
general M̂(r) < M(r). Nevertheless, we can still obtain a good estimate for D̂cap by using
M̂(r) in the place of M(r) in Definition 5. To see why, observe that, for a good estimate for
D̂cap, it is enough if we can estimate M(r) with a constant multiplicative bias independent
of r. Although we have no formal proof that the bias of M̂(r) does not change with r, the
simple greedy procedure described above seems to work well in practice.

Even though the bias of M̂(r) does not affect the estimation of D̂cap as long as it does
not change with r, the variance of M̂(r) can distort the dimension estimate. The main
source of the variance is the dependence of M̂(r) on the the order of the data points in
which they are visited. To eliminate this variance, we repeat the procedure several times
on random permutations of the data, and compute the estimate D̂pack by using the average
of the logarithms of the packing numbers. The number of repetitions depends on r1, r2,
and a preset parameter that determines the accuracy of the final estimate (set to 99% in all
experiments) . The complete algorithm is given formally in Figure 2.

The running time of the algorithm is O
(
nM(r)d

)
where r = min(r1,r2). At smaller scales,

where M(r) is comparable with n, it is O
(
n2d

)
. On the other hand, since the variance of the

estimate also tends to be smaller at smaller scales, the algorithm iterates less for the same
accuracy.

4 Experiments

The two main objectives of the four experiments described here is to demonstrate the ability
of the method to capture the scale-dependent behavior of the intrinsic dimension, and to
underline its robustness in terms of the data generating distribution. In all experiments, the
estimate D̂pack is compared to the correlation dimension estimate D̂corr. Both dimensions
are measured on consecutive pairs of a sequence r1, . . . ,rm of resolutions, and the estimate
is plotted halfway between the two parameters (i.e., D̂(ri,ri+1) is plotted at (ri + ri+1)/2.)
In the first three experiments the manifold is either known or can be approximated easily.
In these experiments we use a two-sided multivariate power distribution with density

p(x) = I{x∈[−1,1]d}
( p

2

)d d

∏
i=1

(
1−|x(i)|

)p−1
(1)

1Typically, the computation of an independent vertex set of G of size at least
(
1− 1

k

)d
MI(G)

requires O(nkd
) time.



PACKINGDIMENSION(Sn,r1,r2,ε)
1 for `← 1 to ∞ do
2 Permute Sn randomly
3 for k← 1 to 2 do
4 C ← /0
5 for i← 1 to n do
6 for j← 1 to |C | do
7 if d

(
Sn[i],C [ j]

)
< rk then

8 j← n+1
9 if j < n+1 then

10 C ← C ∪{Sn[i]}
11 L̂k[`] = log |C |

12 D̂pack =−µ(L̂2)−µ(L̂1)

logr2− logr1

13 if ` > 10 and 1.65
√

σ2(L̂1)+σ2(L̂2)√
`(logr2−logr1)

< D̂pack ∗ (1− ε)/2 then

14 return D̂pack

Figure 2: The algorithm returns the packing dimension estimate D̂pack(r1,r2) of a data set
Sn with ε accuracy nine times out of ten.

with different exponents p to generate uniform (p = 1) and non-uniform data sets on the
manifold.

The first synthetic data is that of Figure 1. We generated 5000 points on a spiral-shaped
manifold with a small uniform perpendicular noise. The curves in Figure 3(a) reflect the
scale-dependency observed in Figure 1. As the distribution becomes uneven, D̂corr severely
underestimates D̂top while D̂pack remains stable.
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Figure 3: Intrinsic dimension of (a) a spiral-shaped manifold and (b) hypercubes of differ-
ent dimensions. The curves reflect the scale-dependency observed in Figure 1. The more
uneven the distribution, the more D̂corr underestimates D̂top while D̂pack remains relatively
stable.

The second set of experiments were designed to test how well the methods estimate the
dimension of 5000 data points generated in hypercubes of dimensions two to six (Fig-
ure 3(b)). In general, both D̂corr and D̂pack underestimates D̂top. The negative bias grows
with the dimension, probably due to the fact that data sets of equal cardinality become



sparser in a higher dimensional space. To compensate this bias on a general data set,
Camastra and Vinciarelli [10] propose to correct the estimate by the bias observed on a
uniformly generated data set of the same cardinality. Our experiment shows that, in the
case of D̂corr, this calibrating procedure can fail if the distribution is highly non-uniform.
On the other hand, the technique seems more reliable for D̂pack due to the relative stability
of D̂pack.

We also tested the methods on two sets of image data. Both sets contained 64×64 images
with 256 gray levels. The images were normalized so that the distance between a black
and a white image is 1. The first set is a sequence of 481 snapshots of a hand turning a
cup from the CMU database2 (Figure 4(a)). The sequence of images sweeps a curve in
a 4096-dimensional space so its informal intrinsic dimension is one. Figure 5(a) shows
that at a small scale, both methods find a local dimension between 1 and 2. At a slightly
higher scale the intrinsic dimension increases indicating a relatively high curvature of the
image sequence curve. To test the distribution dependence of the estimates, we constructed
a polygonal curve by connecting consecutive points of the sequence, and resampled 481
points by using the power distribution (1) with p = 2,3. We also constructed a highly-
uniform, lattice-like data set by drawing approximately equidistant consecutive points from
the polygonal curve. Our results in Figure 5(a) confirm again that D̂corr varies extensively
with the generating distribution on the manifold while D̂pack remains remarkably stable.
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Figure 4: The real datasets. (a) Sequence of snapshots of a hand turning a cup. (b) Faces
database from ISOMAP [4].

The final experiment was conducted on the “faces” database from the ISOMAP paper [4]
(Figure 4(b)). The data set contained 698 images of faces generated by using three free
parameters: vertical and horizontal orientation, and light direction. Figure 5(b) indicates
that both estimates are reasonably close to the informal intrinsic dimension.
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Figure 5: The intrinsic dimension of image data sets.

We found in all experiments that at a very small scale D̂corr tends to be higher than D̂pack,

2http://vasc.ri.cmu.edu/idb/html/motion/hand/index.html



while D̂pack tends to be more stable as the scale grows. Hence, if the data contains very little
noise and it is generated uniformly on the manifold, D̂corr seems to be closer to the “real”
intrinsic dimension. On the other hand, if the data contains noise (in which case at a very
small scale we are estimating the dimension of the noise rather than the dimension of the
manifold), or the distribution on the manifold is non-uniform, D̂pack seems more reliable
than D̂corr.

5 Conclusion

We have presented a new algorithm to estimate the intrinsic dimension of data sets. The
method estimates the packing dimension of the data and requires neither parametric as-
sumptions on the data generating model nor input parameters to set. The method is com-
pared to a widely-used technique based on the correlation dimension. Experiments show
that our method is more robust in terms of the data generating distribution and more reliable
in the presence of noise.
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