Part of Advances in Neural Information Processing Systems 14 (NIPS 2001)
Kevin P. Murphy, Mark Paskin
The hierarchical hidden Markov model (HHMM) is a generalization of the hidden Markov model (HMM) that models sequences with structure at many length/time scales [FST98]. Unfortunately, the original infer- is ence algorithm is rather complicated, and takes the length of the sequence, making it impractical for many domains. In this paper, we show how HHMMs are a special kind of dynamic Bayesian network (DBN), and thereby derive a much simpler inference algorithm, which only takes time. Furthermore, by drawing the connection between HHMMs and DBNs, we enable the application of many stan- dard approximation techniques to further speed up inference.