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Abstract 

Experimental data has shown that synaptic strength modification 
in some types of biological neurons depends upon precise spike tim
ing differences between presynaptic and postsynaptic spikes. Sev
eral temporally-asymmetric Hebbian learning rules motivated by 
this data have been proposed. We argue that such learning rules 
are suitable to analog VLSI implementation. We describe an eas
ily tunable circuit to modify the weight of a silicon spiking neuron 
according to those learning rules. Test results from the fabrication 
of the circuit using a O.6J.lm CMOS process are given. 

1 Introduction 

Hebbian learning rules modify weights of synapses according to correlations between 
activity at the input and the output of neurons. Most artificial neural networks 
using Hebbian learning are based on pulse-rate correlations between continuous
valued signals; they reduce the neural spike trains to mean firing rates and thus 
precise timing does not carry information. With this approach the spiking nature 
of biological neurons is just an efficient solution that evolution has produced to 
transmit analog information over an unreliable medium. 

In recent years, recorded data have indicated that synaptic strength modifications 
are also induced by timing differences between pairs of presynaptic and postsynaptic 
spikes [1][2]. A class of learning rules derived from these experimental data is illus
trated in Figure 1 [2]-[4]. The "causal/non-causal" basis of these Hebbian learning 
algorithms is present in all variants of this spike-timing dependent weight modific
ation rule. When the presynaptic spike arrives at the synapse a few milliseconds 
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Figure 1: Two temporally-asymmetric Hebbian learning rules drawing on 
experimental data. The curves show the shape of the weight change (~W) for 
differences between the firing times of the presynaptic (tpr e) and the postsynaptic 
(tpost) neurons. When the presynaptic spike arrives at the synapse a few ms be
fore the postsynaptic neuron fires , the weight of the synapse is increased. If the 
postsynaptic neuron fires first, the weight is decreased. 

before an output spike is generated, the synaptic efficiency increases. In contrast, 
when the postsynaptic neuron fires first , the efficiency of the synapse is weakened. 
Hence, only those synapses that receive spikes that appear to contribute to the 
generation of the postsynaptic spike are reinforced. In [5] a similar spike-timing 
difference based learning rule has been used to learn input sequence prediction in a 
recurrent network. Studies reported in [4] indicate that the positive (potentiation) 
element of the learning curve must be smaller than the negative (depression) to 
obtain stable competitive weight modification. 

Pulse signal representation has been used extensively in hardware implementations 
of artificial neural networks [6] [7]. Such systems use pulses as a mere technological 
solution to benefit from the robustness of binary signal transmission while making 
use of analog circuitry for the elementary computation units. However , they do not 
exploit the relative timing differences between individual pulses to compute. Also , 
analog hardware is not well-suited to the complexity of most artificial neural network 
algorithms. The learning rules presented in Figure 1 are suitable for analog VLSI 
because: (a) the signals involved in the weight modification are local to the neuron , 
(b) no temporal averaging of the presynaptic or postsynaptic activity is needed and 
(c) they are remarkably simple compared to complex neural algorithms that impose 
mathematical constraints in terms of accuracy and precision. An analog VLSI 
implementation of a similar, but more complex, spike-timing dependent learning 
rule can be found in [8]. 

We describe a circuit that implements the spike-timing dependent weight change 
described above along with the t est results from a fabricated chip. We have focused 
on the implem entation of the weight modification circuits, as VLSI spiking neurons 
with tunable m embrane time constant and refractory period have already been 
proposed in [9] and [10]. 



2 Learning circuit description 

Figure 2 shows the weight change circuit and Figure 3 the form of signals required 
to drive learning. These driving signals are generated by the circuits described in 
Figure 4. The voltage across the weight capacitor , Cw in Figure 2, is modified 
according to t he spike-timing dependent weight change rule discussed above. The 
weight change, ~W, is defined as -~Vw so that the leakage of t he capacitor leads 
Vw in the direction of weight decay. The circuits presented allow the control of: 
(a) the abruptness of the transition between potentiation and depression at the 
origin, (b) the difference between the areas under the curve in the potentiation and 
depression regions, (c) the absolute value of the area under each side of the curve 
and (d) the time constant of t he curve decay. 
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Figure 3: Stimulus for the weight change circuit 

The weight change circuit of Figure 2 works as follows. When a falling edge of 
either a postsynaptic or a presynaptic spike occurs , a short activation pulse is 
generated which causes Cdec to be charged to V pea k through transistor Nl. The 
charge accumulated in Cdec will leak to ground with a rate set by Vdecay ' The 



resulting voltage at the gate of N3 produces a current flowing through P2-P3-N4. If 
a presynaptic spike is active after the falling edge of a postsynaptic spike an active
low up pulse is applied to the gate of transistor P5. Thus, the current flowing 
through N3 is mirrored to transistor P4 causing an increase in the voltage across 
Cw that corresponds to a decrease in the weight. In contrast, when a presynaptic 
spike precedes a postsynaptic spike an active-high down pulse is generated and the 
current in N3 is mirrored to N5-N6 resulting in a discharge of Cw . 

As the current in N2 is constant, the current integrated by Cw displays an expo
nential decay, if Vpeak is such that N3 is in sub-threshold mode. Hence, the rate 
of decay of the learning curve is fixed by the ratio hlCdec. The abruptness of the 
transition zone between potentiation and depression is set by the duration of both 
the presynaptic and postsynaptic spike. Finally, an imbalance between the areas 
under the positive and negative side of the curve can be introduced via Vdep and 
Vpot . The effect of all these circuit parameters is exemplified by the test results 
shown in the following section. 
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Figure 4: Learning drivers. (a) Delayed act pulse generator. (b) Asyn
chronous controller for up and down signals 

The circuit of Figure 4(a) , present in both the presynaptic and postsynaptic neurons, 
generates a short act pulse with the falling edge of the output spike. The act pulses 
are ORed at each synapse to produce the activation pulse applied to the weight 
change circuit of Figure 2. 

The other two driving signals , up and down, are produced by a small asynchronous 
controller using standard and asymmetric C-elements [11] shown in Figure 4(b). 
The internal signal q indicates if the last falling edge to occur corresponds to a 
pre (q = 1) or a postsynaptic spike (q = 0). This ensures that an up signal that 
decreases the weight is only generated when a presynaptic spike is active after the 
falling edge of a postsynaptic spike. Similarly down is activated only when the 
postsynaptic spike is active following a presynaptic spike falling edge. 

Using the current flowing through N3 (Figure 2) to both increase and decrease the 
weight allows us to match the curve at the potentiation and depression regions at 
the expense of having to introduce the driving circuits of Figure 4. 

3 Results from the temporally-asymmetric Hebbian chip 

The circuit in Figure 2 has been fabricated in a O.6J.lm standard CMOS process. 
The driving signals (down, up and activation) are currently generated off-chip. 



The circuit can be operated in t he p,s timescale, however , here we only present test 
results with time constants similar to those suggested by experimental data and 
studied using software models in [3]- [5]. 
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Figure 5: Test result s . Linearity. (a ) The voltage across Cw is initially set to 
OV and increased by a sequence of consecutive pairs of pre and postsynaptic spikes. 
The delays between presynaptic and postsynaptic firing times were set to 2ms , 5ms 
and 7.5ms (b) The order of pre and postsynaptic spikes is reversed to decrease Vw . 

In both plots the duration of the spikes, T sp , and the activation pulse, Ta ct , is set 
to 1ms and and 50p,s respectively. 

The learning window plots shown in Figures 6-8 were constructed with test data 
from a sequence of consecutive presynaptic and postsynaptic spikes with different 
delays . Before every new pair of presynaptic and postsynaptic spikes, the voltage 
in Cw was reset to Vw = 2V . The weight change curves are similar for other initial 
"reset" weight voltages owing to the linearity of the learning circuit for different Vw 
values as shown in Figure 5. A power supply voltage of Vdd = 5V is used in all test 
results shown. 
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Figure 6: Test result s . (a) M aximum weight change.(b) Learning window 
decay. The decay of both tails of the learning window is set by Vdecay. A wide 
range of time constants can be set. Note, however, that Vpeak needs to be increased 
slightly for faster decay rates to maintain exactly the same peak value. 



The maximum weight change is easily tuned with Vp eak as shown in Figure 6( a). 
Changing the value of Vp eak modifies by the same amount the absolute value of the 
peaks at both sides of the curve. The decay of the learning window is controlled 
by Vdecay' An increase in Vdecay causes both tails of the learning window to decay 
faster as seen in Figure 6 (b). As mentioned above, matching between both sides of 
the learning window is possible because the same source of current is used to both 
increase and decrease the weight. 
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Figure 7: Test results. Imbalance between potentiation and depression. 

The imbalance between the areas under the potentiation and depression regions of 
the learning window is a critical parameter of this class of learning rules [3] [4]. The 
circuit proposed can adjust the peak of the curve for potentiation and depression 
independently (Figure 7). Vp ot can be used to reduce the area under the potentiation 
region while keeping unchanged the depression part of the curve , thus setting the 
overall area under the curve to a negative value (Figure 7(b)). Similarly, with 
Vdd - Vdep the area of the depression region can also be reduced (Figure 7 ( a) ) . 
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Figure 8: Test results. Abruptness at the origin 

The abruptness of the learning window at the origin (short delays between pre and 
postsynaptic spikes) is set by the duration of the spikes. Dat a in Figure 8 show 
that the two peaks of the learning window are separated by 2 times the durations 
of the spikes (Tsp ). 



4 Discussion and future work 

Drawn from experimental data, several temporally-asymmetric Hebbian learning 
rules have been proposed recently. These learning rules only strengthen the weights 
when there is a causal relation between presynaptic and postsynaptic activity. 
Purely random time coincidences between spikes will tend to decrease the weights. 
Synaptic weight normalization is thus achieved via competition to drive postsyn
aptic spikes [4]. Predictive sequence learning has been achieved using a similar 
time-difference learning rule based on the same data [5]. Other pulse-based learn
ing rules have also been used to study how delay tuning could be achieved in the 
sound source localization system of the barn owl [12]. 

A simple circuit to implement a general weight change block based on such learning 
rules has been designed and partially fabricated. The main characteristics of the 
learning rule, namely the abruptness at the origin, the rate of the decay of the 
learning window, the imbalance between the potentiation and depression regions 
and the rate of learning , can be tuned easily. The design also ensures that the 
circuit can operate at different timescales. As shown, the fabricated circuits have 
good linearity over a wide range of weight voltage values. 

We are currently developing a second chip with a small network of temporally 
asymmetric Hebbian spiking neurons using the circuit described in this paper. The 
structure of the network will be reconfigurable. The small network will be used to 
carry out movement planning experiments by learning of temporal sequences. We 
envisage the application of networks of temporally-asymmetric Hebbian learning 
silicon neurons as higher level processing stages for the integration of sensor and 
motor activities in neuromorphic system. We will concentrate on auditory applic
ations and adaptive, spike-based motion estimation. In both types of application, 
naturally-occurring correlations in data can be exploited to drive the pulse timing
based learning process. 
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