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Abstract

Experimental data has shown that synaptic strength modification
in some types of biological neurons depends upon precise spike tim-
ing differences between presynaptic and postsynaptic spikes. Sev-
eral temporally-asymmetric Hebbian learning rules motivated by
this data have been proposed. We argue that such learning rules
are suitable to analog VLSI implementation. We describe an eas-
ily tunable circuit to modify the weight of a silicon spiking neuron
according to those learning rules. Test results from the fabrication
of the circuit using a 0.6ugm CMOS process are given.

1 Introduction

Hebbian learning rules modify weights of synapses according to correlations between
activity at the input and the output of neurons. Most artificial neural networks
using Hebbian learning are based on pulse-rate correlations between continuous-
valued signals; they reduce the neural spike trains to mean firing rates and thus
precise timing does not carry information. With this approach the spiking nature
of biological neurons is just an efficient solution that evolution has produced to
transmit analog information over an unreliable medium.

In recent years, recorded data have indicated that synaptic strength modifications
are also induced by timing differences between pairs of presynaptic and postsynaptic
spikes [1][2]. A class of learning rules derived from these experimental data is illus-
trated in Figure 1 [2]-[4]. The “causal/non-causal” basis of these Hebbian learning
algorithms is present in all variants of this spike-timing dependent weight modific-
ation rule. When the presynaptic spike arrives at the synapse a few milliseconds
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Figure 1: Two temporally-asymmetric Hebbian learning rules drawing on
experimental data. The curves show the shape of the weight change (AW) for
differences between the firing times of the presynaptic (f,,.) and the postsynaptic
(tpost) neurons. When the presynaptic spike arrives at the synapse a few ms be-
fore the postsynaptic neuron fires, the weight of the synapse is increased. If the
postsynaptic neuron fires first, the weight is decreased.

before an output spike is generated, the synaptic efficiency increases. In contrast,
when the postsynaptic neuron fires first, the efficiency of the synapse is weakened.
Hence, only those synapses that receive spikes that appear to contribute to the
generation of the postsynaptic spike are reinforced. In [5] a similar spike-timing
difference based learning rule has been used to learn input sequence prediction in a
recurrent network. Studies reported in [4] indicate that the positive (potentiation)
element of the learning curve must be smaller than the negative (depression) to
obtain stable competitive weight modification.

Pulse signal representation has been used extensively in hardware implementations
of artificial neural networks [6][7]. Such systems use pulses as a mere technological
solution to benefit from the robustness of binary signal transmission while making
use of analog circuitry for the elementary computation units. However, they do not
exploit the relative timing differences between individual pulses to compute. Also,
analog hardware is not well-suited to the complexity of most artificial neural network
algorithms. The learning rules presented in Figure | are suitable for analog VLSI
because: (a) the signals involved in the weight modification are local to the neuron,
(b) no temporal averaging of the presynaptic or postsynaptic activity is needed and
(c) they are remarkably simple compared to complex neural algorithms that impose
mathematical constraints in terms of accuracy and precision. An analog VLSI
implementation of a similar, but more complex, spike-timing dependent learning
rule can be found in [8].

We describe a circuit that implements the spike-timing dependent weight change
described above along with the test results from a fabricated chip. We have focused
on the implementation of the weight modification circuits, as VLSI spiking neurons
with tunable membrane time constant and refractory period have already been
proposed in [9] and [10].



2 Learning circuit description

Figure 2 shows the weight change circuit and Figure 3 the form of signals required
to drive learning. These driving signals are generated by the circuits described in
Figure 4. The voltage across the weight capacitor, C,, in Figure 2, is modified
according to the spike-timing dependent weight change rule discussed above. The
weight change, AW, is defined as —AV,, so that the leakage of the capacitor leads
Vi in the direction of weight decay. The circuits presented allow the control of:
(a) the abruptness of the transition between potentiation and depression at the
origin, (b) the difference between the areas under the curve in the potentiation and
depression regions, (c) the absolute value of the area under each side of the curve
and (d) the time constant of the curve decay.
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Figure 2: Weight change circuit
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Figure 3: Stimulus for the weight change circuit
The weight change circuit of Figure 2 works as follows. When a falling edge of
either a postsynaptic or a presynaptic spike occurs, a short activation pulse is

generated which causes Cy.. to be charged to Vj.qp through transistor N1. The
charge accumulated in Cg.. will leak to ground with a rate set by Viecay. The



resulting voltage at the gate of N3 produces a current flowing through P2-P3-N4. If
a presynaptic spike is active after the falling edge of a postsynaptic spike an active-
low %p pulse is applied to the gate of transistor P5. Thus, the current flowing
through N3 is mirrored to transistor P4 causing an increase in the voltage across
'y that corresponds fo a decrease in the weight. In contrast, when a presynaptic
spike precedes a postsynaptic spike an active-high down pulse is generated and the
current in N3 is mirrored to N5-N6 resulting in a discharge of (.

As the current in N2 is constant, the current integrated by C,, displays an expo-
nential decay, if Vj.qr is such that N3 is in sub-threshold mode. Hence, the rate
of decay of the learning curve is fixed by the ratio I5/C4... The abruptness of the
transition zone between potentiation and depression is set by the duration of both
the presynaptic and postsynaptic spike. Finally, an imbalance between the areas
under the positive and negative side of the curve can be introduced via Vi, and
Viot. The effect of all these circuit parameters is exemplified by the test results
shown in the following section.
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Figure 4: Learning drivers. (a) Delayed act pulse generator. (b) Asyn-
chronous controller for up and down signals

The circuit of Figure 4(a), present in both the presynaptic and postsynaptic neurons,
generates a short act pulse with the falling edge of the output spike. The act pulses
are ORed at each synapse to produce the activation pulse applied to the weight
change circuit of Figure 2.

The other two driving signals, @p and down, are produced by a small asynchronous
controller using standard and asymmetric C-elements [11] shown in Figure 4(b).
The internal signal g indicates if the last falling edge to occur corresponds to a
pre (g = 1) or a postsynaptic spike (¢ = 0). This ensures that an up signal that
decreases the weight is only generated when a presynaptic spike is active after the
falling edge of a postsynaptic spike. Similarly down is activated only when the
postsynaptic spike is active following a presynaptic spike falling edge.

Using the current flowing through N3 (Figure 2) to both increase and decrease the
weight allows us to match the curve at the potentiation and depression regions at
the expense of having to infroduce the driving circuits of Figure 4.

3 Results from the temporally-asymmetric Hebbian chip

The circuit in Figure 2 has been fabricated in a 0.6pum standard CMOS process.
The driving signals (down, @p and activation) are currently generated off-chip.



The circuit can be operated in the ps timescale, however, here we only present test
results with time constants similar to those suggested by experimental data and
studied using software models in [3]-[5].
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Figure 5: Test results. Linearity. (a) The voltage across Cy, is initially set to
0V and increased by a sequence of consecutive pairs of pre and postsynaptic spikes.
The delays between presynaptic and postsynaptic firing times were set to 2ms, 5ms
and 7.5ms (b) The order of pre and postsynaptic spikes is reversed to decrease V.
In both plots the duration of the spikes, T, and the activation pulse, T, is set
to Ims and and 50ps respectively.

The learning window plots shown in Figures 6-8 were constructed with test data
from a sequence of consecutive presynaptic and postsynaptic spikes with different
delays. Before every new pair of presynaptic and postsynaptic spikes, the voltage
in (), was reset to Vj,=2V. The weight change curves are similar for other initial
“reset” weight voltages owing to the linearity of the learning circuit for different V,,
values as shown in Figure 5. A power supply voltage of Viz=5V is used in all test
results shown.
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Figure 6: Test results. (a) Maximum weight change.(b) Learning window
decay. The decay of both tails of the learning window is set by Vieeay. A wide
range of time constants can be set. Note, however, that V}..; needs to be increased
slightly for faster decay rates to maintain exactly the same peak value.



The maximum weight change is easily tuned with Vj,..; as shown in Figure 6(a).
Changing the value of V.4 modifies by the same amount the absolute value of the
peaks at both sides of the curve. The decay of the learning window is controlled
by Viecay- An increase in Vi..qy causes both tails of the learning window to decay
faster as seen in Figure 6(b). As mentioned above, matching between both sides of
the learning window is possible because the same source of current is used to both
increase and decrease the weight.
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Figure 7: Test results. Imbalance between potentiation and depression.

The imbalance between the areas under the potentiation and depression regions of
the learning window is a critical parameter of this class of learning rules [3][4]. The
circuit, proposed can adjust the peak of the curve for potentiation and depression
independently (Figure 7). Vj,: can be used to reduce the area under the potentiation
region while keeping unchanged the depression part of the curve, thus setfing the
overall area under the curve to a negative value (Figure 7(b)). Similarly, with
Via — Viep the area of the depression region can also be reduced (Figure 7(a)).
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Figure 8: Test results. Abruptness at the origin

The abruptness of the learning window at the origin (short delays between pre and
postsynaptic spikes) is set by the duration of the spikes. Data in Figure 8 show
that the two peaks of the learning window are separated by 2 times the durations
of the spikes (T};).









