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Abstract 

A nonlinear supervised learning model, the Specialized Mappings 
Architecture (SMA), is described and applied to the estimation of 
human body pose from monocular images. The SMA consists of 
several specialized forward mapping functions and an inverse map
ping function. Each specialized function maps certain domains 
of the input space (image features) onto the output space (body 
pose parameters). The key algorithmic problems faced are those of 
learning the specialized domains and mapping functions in an op
timal way, as well as performing inference given inputs and knowl
edge of the inverse function. Solutions to these problems employ 
the EM algorithm and alternating choices of conditional indepen
dence assumptions. Performance of the approach is evaluated with 
synthetic and real video sequences of human motion. 

1 Introduction 

In everyday life, humans can easily estimate body part locations (body pose) from 
relatively low-resolution images of the projected 3D world (e.g., when viewing a 
photograph or a video). However, body pose estimation is a very difficult computer 
vision problem. It is believed that humans employ extensive prior knowledge about 
human body structure and motion in this task [10]. Assuming this , we consider 
how a computer might learn the underlying structure and thereby infer body pose. 

In computer vision, this task is usually posed as a tracking problem. Typically, 
models comprised of 2D or 3D geometric primitives are designed for tracking a 
specific articulated body [13, 5, 2, 15]. At each frame, these models are fitted to the 
image to optimize some cost function. Careful manual placement of the model on 
the first frame is required, and tracking in subsequent frames tends to be sensitive to 
errors in initialization and numerical drift. Generally, these systems cannot recover 
from tracking errors in the middle of a sequence. To address these weaknesses, 
more complex dynamic models have been proposed [14, 13,9]; these methods learn 
a prior over some specific motion (such as walking). This strong prior however, 
substantially limits the generality of the motions that can be tracked. 



Departing from the aforementioned tracking paradigm, in [8] a Gaussian probability 
model was learned for short human motion sequences. In [17] dynamic program
ming was used to calculate the best global labeling according to the learned joint 
probability density function of the position and velocity of body features. Still, 
in these approaches, the joint locations, correspondences, or model initialization 
must be provided by hand. In [1], the manifold of human body dynamics was mod
eled via a hidden Markov model and learned via entropic minimization. In all of 
these approaches models were learned. Although the approach presented here can 
be used to model dynamics, we argue that when general human motion dynamics 
are intended to be learned, the amount of training data, model complexity, and 
computational resources required are impractical. As a consequence, models with 
large priors towards specific motions (e .g., walking) are generated. In this paper we 
describe a non-linear supervised learning algorithm, the Specialized Maps Archi
tecture (SMA), for recovering articulated body pose from single monocular images. 
This approach avoids the need for initialization and tracking per se, and reduces 
the above mentioned disadvantages. 

2 Specialized Maps 

There at least two key characteristics of the problem we are trying to solve which 
make it different from other supervised learning problems. First, we have access to 
the inverse map. We are trying to learn unknown probabilistic maps from inputs to 
outputs space, but we have access to the map (in general probabilistic) from outputs 
to inputs. In our pose estimation problem, it is easy to see how we can artificially, 
using computer graphics (CG), produce some visual features (e.g., body silhouettes) 
given joint positions1 . Second, it is one-to-many: one input can be associated with 
more than one output. Features obtained from silhouettes (and many other visual 
features) are ambiguous. Consider an occluded arm, or the reflective ambiguity 
generated by symmetric poses. This last observation precludes the use of standard 
algorithms for supervised learning that fit a single mapping function to the data. 

Given input and output spaces ~c and ~t, and the inverse function ( : ~t -+ ~c, we 
describe a solution for these supervised learning problems. Our approach consists 
in generating a series of m functions ¢k : ~c -+ ~t. Each of these functions is 
specialized to map only certain inputs (for a specialized sub-domain) better than 
others. For example, each sub-domain can be a region of the input space. However, 
the specialized sub-domain of ¢k can be more general than just a connected region 
in the input space. 

Several other learning models use a similar concept of fitting surfaces to the observed 
data by splitting the input space into several regions and approximating simpler 
functions in these regions (e.g., [11,7, 6]). However, in these approaches, the inverse 
map is not incorporated in the estimation algorithm because it is not considered 
in the problem definition and the forward model is usually more complex, making 
inference and learning more difficult. 

The key algorithmic problems are that of estimating the specialized domains and 
functions in an optimal way (taking into account the form of the specialized func
tions), and using the knowledge of the inverse function to formulate efficient infer-

IThus, ( is a computer graphics rendering, in general called forward kinematics 



ence and learning algorithms. We propose to determine the specialized domains 
and functions using an approximate EM algorithm and to perform inference using, 
in an alternating fashion, the conditional independence assumptions specified by 
the forward and inverse models. Fig. l(a) illustrates a learned forward model. 

Figure 1: SMA diagram illustrating (a) an already learned SMA model with m specialized 
functions mapping subsets of the training data, each subset is drawn with a different color 
(at initializations, coloring is random) and (b) the mean-output inference process in which a 
given observation is mapped by all the specialized functions , and then a feedback matching 
step, using (, is performed to choose the best of the m estimates. 

3 Probabilistic Model 

Let the training sets of output-input observations be \)! = {1jI1, ... , 1jIN } , and Y = 
{Vl , ... ,VN} respectively. We will use Z i = (1jIi,Vi) to define the given output-input 
training pair, and Z = {ZI ' ... , ZN} as our observed training set. 

We introduce the unobserved random variable y = (Yl , ... , Yn). In our model any Yi 
has domain the discrete set C = {l, ... , M} oflabels for the specialized functions , and 
can be thought as the function number used to map data point i; thus M is the num
ber of specialized mapping functions. Our model uses parameters 8 = (81 , ... , 8M , A) , 
8k represents the parameters of the mapping function k; A = (AI"", AM), where 
Ak represents P(Yi = kI8): the prior probability that mapping function with label 
i will be used to map an unknown point. As an example, P(Yi lz i, 8) represents the 
probability that function number Yi generated data point number i. 

Using Bayes' rule and assuming independence of observations given 8, we have the 
log-probability of our data given the modellogp(ZI8), which we want to maximize: 

argm;x 2:)og LP(1jIi lvi, Yi = k,8)P(Yi = kI8)p(Vi ), 
i k 

(1) 

where we used the independence assumption p(vI8) = p(v). This is also equivalent 
to maximizing the conditional likelihood of the model. 

Because of the log-sum encountered, this problem is intractable in general. How
ever, there exist practical approximate optimization procedures, one of them is 
Expectation Maximization (EM) [3,4, 12]. 

3.1 Learning 

The EM algorithm is well known, therefore here we only provide the derivations 
specific to SMA's. The E-step consists of finding P(y = klz, 8) = P(y). Note that 
the variables Yi are assumed independent (given Zi)' Thus, factorizing P(y): 



p(y) = II P(t)(Yi) = II[(AYiP(1/Jilvi,Yi,B))/(2:AkP(1/Jilvi,Yi = k,B))] (2) 
kEC 

However, p( 1/Ji lVi, Yi = k, B) is still undefined. For the implementation described in 
this paper we use N(1/Ji; ¢k(Vi,Bk), ~k)' where Bk are the parameters of the k-th 
specialized function, and ~k the error covariance of the specialized function k. One 
way to interpret this choice is to think that the error cost in estimating 1/J once 
we know the specialized function to use, is a Gaussian distribution with mean the 
output of the specialized function and some covariance which is map dependent. 
This also led to tractable further derivations. Other choices were given in [16]. 

The M-step consists of finding B(t) = argmaxoEj>(t) [logp(Z,y IB)]. In our case we 
can show that this is equivalent to finding: 

argmJn 2: 2: P(t)(Yi = k)(1/Ji - ¢k(Vi, Bk))T~kl(Zi - ¢k(Zi,Bk))· (3) 
i k 

This gives the following update rules for Ak and ~k (where Lagrange multipliers 
were used to incorporate the constraint that the sum of the Ak'S is 1. 

1 - 2: P(Yi = klzi' B) 
n . 

(4) 

In keeping the formulation general, we have not defined the form of the specialized 
functions ¢k. Whether or not we can find a closed form solution for the update of 
Bk depends on the form of ¢k. For example if ¢k is a non-linear function, we may 
have to use iterative optimization to find Bit). In case ¢k yield a quadratic form, 
then a closed form update exists. However, in general we have: 

(6) 

In our experiments, ¢k is a I-hidden layer perceptron. Thus, the M-step is an 
approximate, iterative optimization procedure. 

4 Inference 

Once learning is accomplished, each specialized function maps (with different levels 
of accuracy) the input space. We can formally state the inference process as that 
of maximum-a-posteriori (MAP) estimation where we are interested in finding the 
most likely output h given an input configuration x: 

h* = argmaxp(hlx) = argmax '" p(hly, x)P(y), 
h h ~ 

(7) 
Y 

Any further treatment depends on the properties of the probability distributions 
involved. If p(hlx, y) = N(h ; ¢y(x) , ~y), the MAP estimate involves finding the 
maximum in a mixture of Gaussians. However, no closed form solution exists and 
moreover, we have not incorporated the potentially useful knowledge of the inverse 
function C. 



4.1 MAP by Using the Inverse Function ( 

The access to a forward kinematics function ( (called here the inverse function) 
allows to formulate a different inference algorithm. We are again interested in 
finding an optimal h* given an input x (e.g. , an optimal body pose given features 
taken from an image). This can be formulated as: 

h* = arg maxp(hlx) = argmaxp(xlh) "p(hly, x)P(y) , 
h h ~ 

(8) 
y 

simply by Bayes' rule, and marginalizing over all variables except h. Note that we 
have made the distribution p(xlh) appear in the solution. This is important because 
we can know use our knowledge of ( to define this distribution. This solution is 
completely general within our architecture, we did not make any assumptions on 
the form of the distributions or algorithms used. 

5 Approximate Inference using ( 

Let us assume that we can approximate Lyp(hly, x)P(y) by a set of samples gen
erated according to p(hly,x)P(y) and a kernel function K(h,hs). Denote the set 
of samples HSpl = {hs}s=l...s. An approximate to Lyp(hly,x)P(y) is formally 

built by ~ L;=l K(h , h s), with the normalizing condition J K(h, hs)dh = 1 for 
any given h s. 

We will consider two simple forms of K. If K(h, h s) = J(h - h s), we have: h = 

argmaxhP(xlh) L;=l J(h - h s). 

After some simple manipulations, this can be reduced to the following equivalent 
discrete optimization problem whose goal is to find the most likely sample s*: 

(9) 

where the last equivalence used the assumption p(xlh) = N(x; ((h), ~d. 
A S 

If K(h, h s) = N(h; hs , ~Spl)' we have: h = argmaxhP(xlh) L S=l N(h; hs , ~Spl). 
This case is hard to use in practice, because contrary to the case above (Eq. 9) , in 
general , there is no guarantee that the optimal h is among the samples. 

5.1 A Deterministic Approximation based on the Functions Mean 
Output 

The structure of the inference in SMA, and the choice of probabilities p(hlx, y) 
allows us to construct a newer approximation that is considerably less expensive to 
compute, and it is deterministic. Intuitively they idea consists of asking each of the 
specialized functions ¢k what their most likely estimate for h is , given the observed 
input x. The opinions of each of these specialized functions are then evaluated 
using our distribution p(xlh) similar to the above sampling method. 

This can be justified by the observation that the probability of the mean is maximal 
in a Gaussian distribution. Thus by considering the means ¢k(X), we would be 
considering the most likely output of each specialized function. Of course, in many 
cases this approximation could be very far from the best solution, for example when 



the uncertainty in the function estimate is relatively high relative to the difference 
between means. 

We use Fig. l(b) to illustrate the mean-output (MO) approximate inference process. 
When generating an estimate of body pose, denoted h, given an input x (the gray 
point with a dark contour in the lower plane), the SMA generates a series of output 
hypotheses tl q, = {h!h obtained using hk = (/Jk(x), with k E C (illustrated by each 
of the points pointed to by the arrows). 

Given the set tl q" the most accurate hypothesis under the mean-output criteria is 
the one that minimizes the function: 

k* (10) 

where in the last equation we have assumed p(xlh) is Gaussian. 

5.2 Bayesian Inference 

Note that in many cases, there may not be any need to simply provide a point 
estimate, in terms of a most likely output h. In fact we could instead use the whole 
distribution found in the inference process. We can show that using the above 
choices for K we can respectively obtain. 

1 s 
p(hlx) = S 2: N (x; ((hs ), ~d, 

8= 1 

(11) 

s 
p(hlx) = N(h; h8' ~Spz) 2:N(x; ((h) , ~d· (12) 

8=1 

6 Experiments 

The described architecture was tested using a computer graphics rendering as our 
( inverse function. The training data set consisted of approx. 7,000 frames of 
human body poses obtained through motion capture. The output consisted of 20 
2D marker positions (i. e., 3D markers projected to the image plane using a per
spective model) but linearly encoded by 8 real values using Principal Component 
Analysis (PCA). The input (visual features) consisted of 7 real-valued Hu moments 
computed on synthetically generated silhouettes of the articulated figure. For train
ing/testing we generated 120,000 data points: our 3D poses from motion capture 
were projected to 16 views along the view-sphere equator. We took 8,000 for train
ing and the rest for testing. The only free parameter in this test, related to the 
given SMA, was the number of specialized functions used; this was set to 15. For 
this, several model selection approaches could be used instead. Due to space limita
tions, in this paper we show results using the mean-output inference algorithm only, 
readers are referred to http://cs-people.bu.edu/rrosales/SMABodyInference where 
inference using multiple samples is shown. 

Fig. 2(left) shows the reconstruction obtained in several single images coming from 
three different artificial sequences. The agreement between reconstruction and ob
servation is easy to perceive for all sequences. Note that for self-occluding configu
rations, reconstruction is harder, but still the estimate is close to ground-truth. No 



human intervention nor pose initialization was required. For quantitative results, 
Fig. 2(right) shows the average marker error and variance per body orientation in 
percentage of body height. Note that the error is bigger for orientations closer 
to a and 7r radians. This intuitively agrees with the notion that at those angles 
(side-views) , there is less visibility of the body parts. We consider this performance 
promising, given the complexity of the task and the simplicity of the approach. By 
choosing poses at random from training set, the RMSE was 17% of body height. In 
related work, quantitative performance have been usually ignored, in part due to 
the lack of ground-truth and standard evaluation data sets. 
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Figure 2: Left: Example reconstruction of several test sequences with CG-generated 
silhouettes. Each set consists of input images and reconstruction (every 5th frame). Right: 
Marker root-mean-square-error and variance per camera viewpoint (every 27r/32 rads.). 
Units are percentage of body height. Approx. 110,000 test poses were used. 

6.1 Experiments using Real Visual Cues 

Fig. 3 shows examples of system performance with real segmented visual data, 
obtained from observing a human subject. Reconstruction for several relatively 
complex sequences are shown. Note that even though the characteristics of the 
segmented body differ from the ones used for training, good performance is still 
achieved. Most reconstructions are visually close to what can be thought as the 
right pose reconstruction. Body orientation is also generally accurate. 

7 Conclusion 

In this paper, we have proposed the Specialized Mappings Architecture (SMA) . A 
learning algorithm was developed for this architecture using ideas from ML estima
tion and latent variable models. Inference was based on the possibility of alterna
tively use different sets of conditional independence assumptions specified by the 
forward and inverse models. The incorporation of the inverse function in the model 
allows for simpler forward models. For example the inverse function is an architec
tural alternative to the gating networks of Mixture of Experts [11]. SMA advantages 
for body pose estimation include: no iterative methods for inference are used, the 



Figure 3: Reconstruction obtained from observing a human subject (every 10th frame). 

algorithm for inference runs in constant time and scales only linearly O(M) with 
respect to the number of specialized functions M; manual initialization is not re
quired; compared to approaches that learn dynamical models, the requirements for 
data are much smaller, and also large priors to specific motions are prevented thus 
improving generalization capabilities. 
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