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Abstract

Motivated by our recent work on rooted tree matching, in this paper we
provide a solution to the problem of matching two free (i.e., unrooted)
trees by constructing an association graph whose maximal cliques are
in one-to-one correspondence with maximal common subtrees. We then
solve the problem using simple replicator dynamics from evolutionary
game theory. Experiments on hundreds of uniformly random trees are
presented. The results are impressive: despite the inherent inability of
these simple dynamics to escape from local optima, they always returned
a globally optimal solution.

1 Introduction

Graph matching is a classic problem in computer vision and pattern recognition, instances
of which arise in areas as diverse as object recognition, motion and stereo analysis [1]. In
many problems (e.g., [2, 11, 19]) the graphs at hand have a peculiar structure: they are
connected and acyclic, i.e. they are free trees. Note that, unlike “rooted” trees, in free
trees there is no distinguished node playing the role of the root, and hence no hierarchy is
imposed on them. Standard graph matching techniques, such as [8], yield solutions that are
not constrained to preserve connectedness and hence cannot be applied to free trees.

A classic approach to solving the graph matching problem consists of transforming it into
the equivalent problem of finding a maximum clique in an auxiliary graph structure, known
as the association graph [1]. This framework is attractive because it casts graph matching
as a pure graph-theoretic problem, for which a solid theory and powerful algorithms have
been developed. Note that, although the maximum clique problem is known to be

���
-

hard, powerful heuristics exist which efficiently find good approximate solutions [4].

Motivated by our recent work on rooted tree matching [15], in this paper we propose a
solution to the free tree matching problem by providing a straightforward way of deriv-
ing an association graph from two free trees. We prove that in the new formulation there
is a one-to-one correspondence between maximal (maximum) cliques in the derived asso-
ciation graph and maximal (maximum) subtree isomorphisms. As an obvious corollary,
the computational complexity of finding a maximum clique in such graphs is therefore the
same as the subtree isomorphism problem, which is known to be polynomial in the number
of nodes [7].

Following [13, 15], we use a recent generalization of the Motzkin-Straus theorem [12] to



formulate the maximum clique problem as a quadratic programming problem. To (approxi-
mately) solve it we employ replicator equations, a class of simple continuous- and discrete-
time dynamical systems developed and studied in evolutionary game theory [10, 17].

We illustrate the power of the approach via experiments on hundreds of (uniformly) random
trees. The results are impressive: despite the counter-intuitive maximum clique formulation
of the tree matching problem, and the inherent inability of these simple dynamics to escape
from local optima, they always found a globally optimal solution.

2 Subtree isomorphisms and maximal cliques

Let ���������
	�� be a graph, where � is the set of nodes and 	 is the set of (undirected)
edges. The order of � is the number of nodes in � , while its size is the number of edges.
Two nodes 
��
����� are said to be adjacent (denoted 
���� ) if they are connected by an
edge. The adjacency matrix of � is the ����� symmetric matrix ��������� �"!#� defined as

� �"! �
$�% � if � � �&� !' � otherwise (

The degree of a node 
 , denoted )+*-,.�/
0� , is the number of nodes adjacent to it. A path is
any sequence of distinct nodes 
012
435(2(-(6
87 such that for all 9:� % (2(2(;� , 
 �=< 3>�?
 � ; in this
case, the length of the path is � . If 
01@�A
B7 the path is called a cycle. A graph is said
to be connected if any two nodes are joined by a path. The distance between two nodes 

and � , denoted by C8�/
5�;�+� , is the length of the shortest path joining them (by conventionC8�/
5�;�+�D�FE , if there is no such path). Given a subset of nodes GIHJ� , the induced
subgraph �LK GNM is the graph having G as its node set, and two nodes are adjacent in �LK GNM
if and only if they are adjacent in � . A connected graph with no cycles is called a free tree,
or simply a tree. Trees have a number of interesting properties. One which turns out to
be very useful for our characterization is that in a tree any two nodes are connected by a
unique path.

Let O 3 �J��� 3 �P	 3 � and O0QR�J���.QS�
	TQ#� be two trees. Any bijection UWVYX 3[Z X\Q , withX[3�H]�83 and X Q H?� Q , is called a subtree isomorphism if it preserves both the adjacency
relationships between the nodes and the connectedness of the matched subgraphs. For-
mally, this means that, given 
5�;�[�^X_3 , we have 
��W� if and only if U5�/
0���]U��=� � and, in
addition, the induced subgraphs O 3 K X 3 M and O0Q`K XaQ2M are connected. A subtree isomorphism
is maximal if there is no other subtree isomorphism U4bcV0X^b3 Z X^bQ with XR3 a strict sub-
set of X�b3 , and maximum if XR3 has largest cardinality. The maximal (maximum) subtree
isomorphism problem is to find a maximal (maximum) subtree isomorphism between two
trees. A word of caution about terminology is in order here. Despite name similarity, we
are not addressing the so-called subtree isomorphism problem, which consists of determin-
ing whether a given tree is isomorphic to a subtree of a larger one. In fact, we are dealing
with a generalization thereof, the maximum common subtree problem, which consists of
determining the largest isomorphic subtrees of two given trees. We shall continue to use
our own terminology, however, as it emphasizes the role of the isomorphism U .

The free tree association graph (FTAG) of two trees Od3��e���B3f�P	N3-� and O Q �g�h� Q �
	 Q � is
the graph �i�������
	j� where

���W� 3 �@�.Q (1)

and, for any two nodes �/
5�;kN� and �/�8�
l � in � , we have

�=
��
kN�����/�8�
l �nmoC.�=
��
� �p�WC8�/kq�Plr��( (2)

Note that this definition of the association graph is stronger than the standard one used for
matching arbitrary relational structures [1].



A subset of vertices of � is said to be a clique if all its nodes are mutually adjacent. A
maximal clique is one which is not contained in any larger clique, while a maximum clique
is a clique having largest cardinality. The maximum clique problem is to find a maximum
clique of � .

The following theorem, which is the basis of the work reported here, establishes a one-to-
one correspondence between the maximum subtree isomorphism problem and the maxi-
mum clique problem.

Theorem 1 Any maximal (maximum) subtree isomorphism between two trees induces a
maximal (maximum) clique in the corresponding FTAG, and vice versa.

Proof (outline). Let U&VYX_3 Z X Q be a maximal subtree isomorphism between trees On3
and O Q , and let ��� �h�:�P	�� denote the corresponding FTAG. Let G � H � be defined asG � ���r�=
�� U5�/
0�;�>Vr
 ��X 3�� . From the definition of a subtree isomorphism it follows thatU maps the path between any two nodes 
��
��� X 3 onto the path joining U5�=
B� and U��=� � .
This clearly implies that C.�=
��
� �\��C.�hU��=
B� �PU5�/�+�;� for all 
?� X_3 , and therefore G � is a
clique. Trivially, G � is a maximal clique because U is maximal, and this proves the first
part of the theorem.

Suppose now that G����r�=
 3 �;k 3 � �������4�#�/
 7 �;k 7 � � is a maximal clique of � , and let X 3 �
�-
43#�������Y�;
B7 � H&�B3 and X Q �	�-k>3f�������0�;k 7 � HW� Q . Define U�VrXR3 Z X Q as U5�/
 � �p�Wk � ,
for all 9d� % (-(2(;� . From the definition of the FTAG and the hypothesis that G is a clique, it
is simple to see that U is a one-to-one and onto correspondence between X 3 and XaQ , which
trivially preserves the adjacency relationships between nodes. The fact that U is a maximal
isomorphism is a straightforward consequence of the maximality of G .

To conclude the proof we have to show that the subgraphs that we obtain when we restrict
ourselves to X 3 and XaQ , i.e. O 3 K X 3 M and O0Q K XaQ2M , are trees, and this is equivalent to showing
that they are connected. Suppose by contradiction that this is not the case, and let 
 � �

 ! �X[3 be two nodes which are not joined by a path in On3 K XL3 M . Since both 
 � and 
 ! are nodes
of OY3 , however, there must exist a path 
 � ��
 1�
B3n(-(2(

����g
 ! joining them in O�3 . Let

�����
�� , for some ��� % (2(-(
� , be a node on this path which is not in X 3 . Moreover, let� �a� � � be the � -th node on the path k � � � 1 � 3n(2(2( � �A� k ! which joins k � and k ! inO Q (remember that C8�/
 � �

 ! �N��C8�/k � �;k ! � , and hence C.�=k � �;k ! �>��� ). It is easy to show
that the set �r��
�� � � �2� ��� G H � is a clique, thereby contradicting the hypothesis that G is
a maximal clique. This can be proved by exploiting the obvious fact that if 
 is a node on
the path joining any two nodes 
 and � , then C.�=
��
� �:� C8�/
5��
8����C8��
��;�+� .
The “maximum” part of the statement is proved similarly.

The FTAG is readily derived by using a classical representation for graphs, i.e., the so-
called distance matrix which, for an arbitrary graph � ���h�:�P	�� of order � , is the ���^�
matrix � � �=C �"! � where C �"! �?C8�/
 � �

 ! � , the distance between nodes 
 � and 
 ! . Efficient,
classical algorithms are available for obtaining such a matrix [6]. Note also that the distance
matrix of a graph can easily be constructed from its adjacency matrix ��� . In fact, denoting
by � 7� ! the �/9 �!  � -th entry of the matrix � 7� , the � -th power of � � , we have that C � ! equals
the least � for which � 7� !#" '

(there must be such an � since a tree is connected).

3 Matching free trees with replicator dynamics

Let ��� �����
	j� be an arbitrary graph of order � , and let $Y7 denote the standard simplex of
IR
7

:

$07L�%��& � IR
7 V(' b &^� %

and 
 �*) ' �Y9d� % (2(2(;� �



where ' is the vector whose components equal 1, and a prime denotes transposition. Given
a subset of vertices G of � , we will denote by &�� its characteristic vector which is the point
in $ 7 defined as


 �� � $ %���� G � � if 9p�@G' � otherwise

where
� G �

denotes the cardinality of G .

Now, consider the following quadratic function� � ��&Y��� & b � � & �
%� & b & (3)

where � � �g�=� � ! � is the adjacency matrix of � . The following theorem, recently proved
by Bomze [3], expands on the Motzkin-Straus theorem [12], a remarkable result which es-
tablishes a connection between the maximum clique problem and quadratic programming.

Theorem 2 Let G be a subset of vertices of a graph � , and let &�� be its characteristic
vector. Then, G is a maximal (maximum) clique of � if and only if &	� is a local (global)
maximizer

� � in $ 7 . Moreover, all local (and hence global) maximizers of
� � in $ 7 are

strict and are characteristic vectors of maximal cliques of � .

Unlike the original Motzkin-Straus formulation, which is plagued by the presence of “spu-
rious” solutions [14], the previous result guarantees us that all maximizers of

� � on $07
are strict, and are characteristic vectors of maximal/maximum cliques in � . In a formal
sense, therefore, a one-to-one correspondence exists between maximal cliques and local
maximizers of

� � in $ 7 on the one hand, and maximum cliques and global maximizers on
the other hand.

We now turn our attention to a class of simple dynamical systems that we use for solving
our quadratic optimization problem. Let 
 �A�/kN�"! � be a non-negative real-valued � �@�
matrix, and consider the following continuous-time dynamical system:�
.�P�
�;��� 
.�P�
�;� ����

�
���;��� 7�
!�� 3 
+! �
�;�

�
!r�
�;���� (4)

where a dot signifies derivative with respect to time, and its discrete-time counterpart:


8�
��� � % �:� 
8�
���;� � �P���;�� 7!�� 3 
 ! ���;� � ! �
�;� (5)

where �
� �
�;�:� 7�

!�� 3 k � ! 
 ! �
�;��( (6)

Both (4) and (5) are called replicator equations in evolutionary game theory, since they
are used to model evolution over time of relative frequencies of interacting, self-replicating
entities [10, 17]. It is readily seen that the simplex $ 7 is invariant under these dynamics,
which means that every trajectory starting in $�7 will remain in $47 for all future times, and
their stationary points coincide.

We are now interested in the dynamical properties of replicator dynamics; it is these prop-
erties that will allow us to solve our original tree matching problem. The following result
is known in mathematical biology as the fundamental theorem of natural selection [10, 17]
and, in its original form, traces back to R. A. Fisher.



Theorem 3 If 
 � 
ib then the function &�b 
 & is strictly increasing along any non-
constant trajectory under both continuous-time (4) and discrete-time (5) replicator dynam-
ics. Furthermore, any such trajectory converges to a stationary point. Finally, a vector
&�� $ 7 is asymptotically stable under (4) and (5) if and only if & is a strict local maximizer
of &4b 
 & on $07 .

In light of their dynamical properties, replicator equations naturally suggest themselves
as a simple heuristic for solving the maximal subtree isomorphism problem. Indeed, letO 3 �I�h� 3 �
	 3 � and O0Q �I���.Q`�P	TQ-� be two free trees, and let � � denote the adjacency
matrix of their FTAG � . By letting 
 �W� � �

%� � (7)

where
�

is the identity matrix, we know that the replicator dynamical systems (4) and (5),
starting from an arbitrary initial state, will iteratively maximize the function

� � defined
in (3) over the simplex and will eventually converge with probability 1 to a strict local
maximizer which, by virtue of Theorem 2, will then correspond to the characteristic vector
of a maximal clique in the association graph. As stated in Theorem 1, this will in turn
induce a maximal subtree isomorphism between O 3 and O0Q . Clearly, in theory there is no
guarantee that the converged solution will be a global maximizer of

� � , and therefore that
it will induce a maximum isomorphism between the two original trees, but see below.

Recently, there has been much interest around the following exponential version of repli-
cator equations, which arises as a model of evolution guided by imitation [9, 10, 17]:�
 � ���;��� 
 � �
�;� � �������
	���
� 7!�� 3 
 ! �
�;� � ������	���
 � %�� � (8)

where � is a positive constant. As � tends to 0, the orbits of this dynamics approach those
of the standard, “first-order” replicator model (4), slowed down by the factor � ; moreover,
for large values of � the model approximates the so-called “best-reply” dynamics [9, 10]. A
customary way of discretizing equation (8) is given by the following difference equations:


 � �
� � % �:� 
 � �
�;� ��������	���
� 7!�� 3 
 ! �
�;� � ��� � 	���
 ( (9)

From a computational perspective, exponential replicator dynamics are particularly attrac-
tive as they may be considerably faster and even more accurate than the standard, first-order
model (see [13] and the experiments reported in the next section).

4 Results and conclusions

We tested our algorithms over large random trees. Random structures represent a useful
benchmark not only because they are not constrained to any particular application, but also
because it is simple to replicate experiments and hence to make comparisons with other
algorithms.

In this series of experiments, the following protocol was used. A hundred 100-node free
trees were generated uniformly at random using a procedure described by Wilf in [18].
Then, each such tree was subject to a corruption process which consisted of randomly
deleting a fraction of its nodes (in fact, the to-be-deleted nodes were constrained to be
the terminal ones, otherwise the resulting graph would have been disconnected), thereby
obtaining a tree isomorphic to a proper subtree of the original one. Various levels of corrup-
tion (i.e., percentage of node deletion) were used, namely 2%, 10%, 20%, 30% and 40%.
This means that the order of the pruned trees ranged from 98 to 60. Overall, therefore, 500



pairs of trees were obtained, for each of which the corresponding FTAG was constructed
as described in Section 2. To keep the order of the association graph as low as possible, its
vertex set was constructed as follows:

���%�r�=
��
kN� �@� b �@� b b V�)+*2,8�/
0��� ) *2,B�/kN� � �
assuming

� � b � � � � b b � , the edge set 	 being defined as in (2). It is straightforward to see
that when the first tree is isomorphic to a subtree of the second, Theorem 1 continues to
hold. This simple heuristic may significantly reduce the dimensionality of the search space.
We also performed some experiments with unpruned FTAG’s but no significant difference
in performance was noticed apart, of course, heavier memory requirements.

Both the discrete-time first-order dynamics (5) and its exponential counterpart (9) (with��� % '
) were used. The algorithms were started from the simplex barycenter and stopped

when either a maximal clique (i.e., a local maximizer of
� � ) was found or the distance

between two successive points was smaller than a fixed threshold. In the latter case the
converged vector was randomly perturbed, and the algorithms restarted from the perturbed
point. Note that this situation corresponds to convergence to a saddle point.

After convergence, we calculated the proportion of matched nodes, i.e., the ratio between
the cardinality of the clique found and the order of the smaller subtree, and then we aver-
aged. Figure 1(a) shows the results obtained using the linear dynamics (5) as a function of
the corruption level. As can be seen, the algorithm was always able to find a correct maxi-
mum isomorphism, i.e. a maximum clique in the FTAG. Figure 1(b) plots the correspond-
ing (average) CPU time taken by the processes, with corresponding error bars (simulations
were performed on a machine equipped with a 350MHz AMDK6-2 processor).

In Figure 2, the results pertaining to the exponential dynamics (8) are shown. In terms of
solution’s quality the algorithm performed exactly as its linear counterpart, but this time it
was dramatically faster. This confirms earlier results reported in [13].

Before concluding, we note that our approach can easily be extended to tackle the problem
of matching attributed (free) trees. In this case, the attributes result in weights being placed
on the nodes of the association graph, and a conversion of the maximum clique problem to a
maximum weight clique problem [15, 5]. Moreover, it is straightforward to formulate error-
tolerant versions of our framework along the lines suggested in [16] for rooted attributed
trees, where many-to-many node correspondences are allowed. All this will be the subject
of future investigations.

Finally, we think that the results presented in this paper (together with those reported in [13,
15]) raise intriguing questions concerning the connections between (standard) notions of
computational complexity and the “elusiveness” of global optima in continuous settings.

Acknowledgments. The author would like to thank M. Zuin for his support in performing
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