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Abstract 

Visual inspection of neurons suggests that dendritic orientation may be 
determined both by internal constraints (e.g. membrane tension) and by 
external vector fields (e.g. neurotrophic gradients). For example, basal 
dendrites of pyramidal cells appear nicely fan-out. This regular 
orientation is hard to justify completely with a general tendency to 
grow straight, given the zigzags observed experimentally. Instead, 
dendrites could (A) favor a fixed (“external”) direction, or (B) repel 
from their own soma. To investigate these possibilities quantitatively, 
reconstructed hippocampal cells were subjected to Bayesian analysis. 
The statistical model combined linearly factors A and B, as well as the 
tendency to grow straight. For all morphological classes, B was found 
to be significantly positive and consistently greater than A. In addition, 
when dendrites were artificially re-oriented according to this model, the 
resulting structures closely resembled real morphologies. These results 
suggest that somatodendritic repulsion may play a role in determining 
dendritic orientation. Since hippocampal cells are very densely packed 
and their dendritic trees highly overlap, the repulsion must be cell-
specific. We discuss possible mechanisms underlying such specificity.  

1  Intr oduc t i on  

The study of brain dynamics and development at the cellular level would greatly benefit 
from a standardized, accurate and yet succinct statistical model characterizing the 
morphology of major neuronal classes. Such model could also provide a basis for 
simulation of anatomically realistic virtual neurons [1]. The model should accurately 
distinguish among different neuronal classes: a morphological difference between classes 
would be captured by a difference in model parameters and reproduced in generated 
virtual neurons. In addition, the model should be self-consistent: there should be no 
statistical difference in model parameters measured from real neurons of a given class 
and from virtual neurons of the same class. The assumption that a simple statistical model 
of this sort exists relies on the similarity of average environmental and homeostatic 
conditions encountered by individual neurons during development and on the limited 
amount of genetic information that underlies differentiation of neuronal classes.  

Previous research in computational neuroanatomy has mainly focused on the topology 
and internal geometry of dendrites (i.e., the properties described in “dendrograms”) [2,3]. 
Recently, we attempted to include spatial orientation in the models, thus generating 
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virtual neurons in 3D [4]. Dendritic growth was assumed to deviate from the straight 
direction both randomly and based on a constant bias in a given direction, or “tropism”. 
Different models of tropism (e.g. along a fixed axis, towards a plane, or away from the 
soma) had dramatic effects on the shape of virtual neurons [5]. Our current strategy is to 
split the problem of finding a statistical model describing neuronal morphology in two 
parts. First, we maintain that the topology and the internal geometry of a particular 
dendritic tree can be described independently of its 3D embedding (i.e., the set of local 
dendritic orientations). At the same time, one and the same internal geometry (e.g., the 
experimental dendrograms obtained from real neurons) may have many equally plausible 
3D embeddings that are statistically consistent with the anatomical characteristics of that 
neuronal class. The present work aims at finding a minimal statistical model describing 
local dendritic orientation in experimentally reconstructed hippocampal principal cells. 

Hippocampal neurons have a polarized shape: their dendrites tend to grow from the soma 
as if enclosed in cones. In pyramidal cells, basal and apical dendrites invade opposite 
hemispaces (fig. 1A), while granule cell dendrites all invade the same hemispace. This 
behavior could be caused by a tendency to grow towards the layers of incoming fibers to 
establish synapses. Such tendency would correspond to a tropism in a direction roughly 
parallel to the cell main axis. Alternatively, dendrites could initially stem in the 
appropriate (possibly genetically determined) directions, and then continue to grow 
approximately in a radial direction from the soma. A close inspection of pyramidal 
(basal) trees suggests that dendrites may indeed be repelled from their soma (Fig. 1B). A 
typical dendrite may reorient itself (arrow) to grow nearly straight along a radius from the 
soma. Remarkably, this happens even after many turns, when the initial direction is lost. 
Such behavior may be hard to explain without tropism. If the deviations from straight 
growth were random, one should be able to “remodel” th e trees by measuring and 
reproducing the statistics of local turn angles, assuming its independence of dendritic 
orientation and location. Figure 1C shows the cell from 1A after such remodeling. In this 
case basal and apical dendrites retain only their initial (stemming) orientations from the 
original data. The resulting “cotton ball” s uggests that dendritic turns are not in dependent 
of dendritic orientation. In this paper, we use Bayesian analysis to quantify the dendritic 
tropism. 

2  Me thods  

Digital files of fully reconstructed rat hippocampal pyramidal cells (24 CA3 and 23 CA1 
neurons) were kindly provided by Dr. D. Amaral. The overall morphology of these cells, 
as well as the experimental acquisition methods, were extensively described [6]. In these 
files, dendrites are represented as (branching) chains of cylindrical sections. Each section 
is connected to one other section in the path to the soma, and may be connected on the 
other extremity to two other sections (bifurcation), one other section (continuation point), 
or no other section (terminal tip). Each section is described in the file by its ending point 
coordinates, its diameter and its "parent", i.e., the attached section in the path to the soma 
[5,7]. In CA3 cells, basal dendrites had an average of 687(±216) continuation points and 
72(±17) bifurcations per cell, while apical dendrites had 717(±156) continuation points 
and 80(±21) bifurcations per cell. CA1 cells had 462(±138) continuation points and 
52(±12) bifurcations (basal), 860(±188) continuation points and 120(±22) bifurcations 
(apical). In the present work, basal and apical trees of CA3 and CA1 pyramidal cells were 
treated as 4 different classes. Digital data of rat dentate granule cells [8] are kindly made 
available by Dr. B. Claiborne through the internet (http://cascade.utsa.edu/bjclab). Only 
36 of the 42 cells in this archive were used: in 6 cases numerical processing was not 
accomplished due to minor inconsistencies in the data files. The “rejected” cells were 
1208875, 3319201, 411883, 411884A, 411884B, 803887B. Granule dendrites had 
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549(±186) continuation points and 30(±6) bifurcations per cell. Cells in these or similar 
formats can be rendered, rotated, and zoomed with a java applet available through the 
internet (www.cns.soton.ac.uk) [7]. 

 

 

Figure 1: A: A pyramidal cell (c53063) from Amaral’s archive. B: A zoom-in from panel 
A (arrows point to the same basal tree location). Dotted dendrites are behind the plane. C: 
Same cell (c53063) with its dendritic orientation remodeled assuming zero tropism and 
same statistics of all turn angles (see Results). 

In agreement with the available format of morphological data (described above), the 
process of dendritic growth1 can be represented as a discrete stochastic process consisting 
of sequential attachment of new sections to each growing dendrite. Here we keep the 
given internal geometry of the experimental data while remodeling the 3D embedding 
geometry (dendritic orientation). The task is to make a remodeled geometry statistically 
consistent with the original structure. The basic assumption is that neuronal development1 
is a Markov process governed by local rules [4]. Specifically, we assume that (i) each 
step in dendritic outgrowth only depends on the preceding step and on current local 
conditions; and (ii) dendrites do not undergo geometrical or topological modification 
after their formation (see, however, Discussion). In this Markov approximation, a 
plausible 3D embedding can be found by sequentially orienting individual sections, 
starting from the soma and moving toward the terminals. We are implementing this 
procedure in two-step iterations (1). First, at a given node i with coordinates r i we select a 
section i+1, disregard its given orientation, and calculate its most likely expected 
direction n' i+1 based on the model (here section i+1 connects nodes i and i+1, and n 
stands for a unit vector). For a continuation point, the most likely direction n'i+1 is 
computed as the direction of the vector sum ni + vi. The first term is the direction of the 
parent section ni, and reflects the tendency dendrites exhibit to grow relatively straight 
due to membrane tension, mechanical properties of the cytoskeleton, etc. The second 
term is a local value of a vector field: vi = v(r i), which comprises the influence of external 
local conditions on the direction of growth (as specified below). Finally, we generate a 
perturbation of the most likely direction n' i+1 to produce a particular plausible instance of 
a new direction. In summary, the new direction ni+1 is generated as: 

                                                
1 Although we resort to a developmental metaphor, our goal is to describe accurately 
the result of development rather than the process of development. 
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Here Ti is an operator that deflects n'i+1 into a random direction. If we view each 
deflection as a yaw of angle αi, then the corresponding rolling angle (describing rotation 
around the axis of the parent dendrite) is distributed uniformly between 0 and 2π. The 
probability distribution function for deflections as a function of αi is taken in a form that, 
as we found, well fits experimental data: 

( ) ,σ
αi

eP i

−
∝T       (2) 

where σ << 1 is a parameter of the model. At bifurcation points, the same rule (1), (2) is 
applied for each daughter independently. A more accurate and plausible description of 
dendritic orientation at bifurcations might require a more complex model. However, our 
simple choice yields surprisingly good results (see below). The model (1), (2) can be used 
in the simulation of virtual neuronal morphology. In this case one would first need to 
generate the internal geometry of the dendrites [1-5]. Most importantly, model (1), (2) 
can be used to quantitatively assess the significance of the somatocentric (radial) tropism 
of real dendrites. Assuming that there is a significant preferential directionality of growth 
in hippocampal dendrites, the two main alternatives are (see Introduction): 

HA: The dominating tropic factor is independent of the location of the soma.  
HB: The dominating tropic factor is radial with respect to the soma.  

The simplest model for the vector field v that discriminates between these alternative 
hypotheses includes both factors, A and B, linearly: 

.r
ii bnav +=       (3) 

Here a = (ax, ay, az) is a constant vector representing global directionality of cell-
independent environmental factors (chemical gradients, density of neurites, etc.) 
influencing dendritic orientation. nr

i is the unit vector in the direction connecting the 
soma to node i, thus representing a somatocentric tropic factor. In summary, ax, ay, az, b 
and σ are the parameters of the model. Finding that the absolute value a = |a| is 
significantly greater than b would support HA. On the contrary, finding that b is greater 
than a would support HB. Based on a Bayesian approach, we compute the most likely 
values of a, b and σ by maximization of the likelihood of all experimentally measured 
orientations (taken at continuation points only) of a given dendritic tree: 
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where αi is given by (1)-(3) with experimental section orientations substituted for ni, ni+1, 
asterisk denotes most likely values, and the average is over all continuation points. Given 
a* and b*, the value of σ* can be found from the average value of αi computed with a = 
a* and b = b*. The relation results from differentiation of (4) by σ. The same relation 
holds for the average value of α computed based on the probability distribution function 
(2) with σ = σ*. Therefore, <αi> computed from the neurometric data with a = a* and b 
= b* is equal to <α> based on (2) with σ = σ*. The model is thus self-consistent: the 
measured value of σ* in a remodeled neuron is guaranteed to coincide on average with 
the input parameter σ used for simulation. In addition, our numerical analysis indicates 
self-consistency of the model with respect to a and b, when their values are within a 
practically meaningful range. 
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3  Re sul t s  

Results of the Bayesian analysis are presented in Table 1. Parameters a and b were 
optimized for each cell individually,  then the absolute value a = |a| was taken for each 
cell. The mean value and the standard deviation of a in Table 1 were computed based on 
the set of the individual absolute values, while each individual value of b was taken with 
its sign (which was positive in all cases but one). The most likely direction of a varied 
significantly among cells, i.e., no particular fixed direction was generally preferred. 

 

Table 1: Results from Bayesian analysis (mean ± standard deviation). α is the minimized 
deflection angle, a and b are parameters of the model (1)-(3) computed according to (4). 
 

 Original data Z coordinate set to zero 
Dataset α B a α b A 

CA3-bas 16.4 ± 2.3 0.49 ± 0.17 0.08 ± 0.05 12.0 ± 2.4 0.42 ± 0.15 0.06 ± 0.05 
CA3-apic 15.2 ± 1.9 0.36 ± 0.16 0.12 ± 0.07 12.0 ± 2.9 0.29 ± 0.23 0.10 ± 0.14 
CA1-bas 16.6 ± 1.6 0.49 ± 0.26 0.14 ± 0.10 14.2 ± 1.9 0.48 ± 0.31 0.16 ± 0.12 
CA1-apic 19.1 ± 2.0 0.30 ± 0.20 0.16 ± 0.15 17.3 ± 2.4 0.22 ± 0.17 0.11 ± 0.10 
Granule 19.1 ± 2.7 1.01 ± 0.64 0.17 ± 0.11 11.0 ± 1.9 0.36 ± 0.16 0.07 ± 0.05 

 

The key finding is that a is not significantly different from zero, while b is significantly 
positive. The slightly higher coefficient of variation obtained for granule cells could be 
due to a larger experimental error in the z coordinate (orthogonal to the slice). In several 
granule cells (but in none of the pyramidal cells) the greater noise in z was apparent upon 
visual inspection of the rendered structures. Therefore, we re-ran the analysis discarding 
the z coordinate (right columns). Results changed only minimally for pyramidal cells, and 
the granule cell parameters became more consistent with the pyramidal cells.  

The measured average values of the model parameters were used for remodeling of 
experimental neuronal shapes, as described above. In particular, b was set to 0.5, while a 
was set to zero. We kept the internal geometry and the initial stemming direction of each 
tree from the experimental data, and simulated dendritic orientation at all nodes separated 
by more than 2 steps from the soma. A typical result is shown in Figure 2. Generally, the 
artificially re-oriented dendrites looked better than one could expect for a model as 
simple as (1) – (3). This result may be compared with figure 1C, which shows an 
example of remodeling based on the same model in the absence of tropism (a = b = 0). 
Although in this case the shape can be improved by reducing σ, the result never gets as 
close to a real shape as in Fig. 2 C, D, even when random, uncorrelated local distortions 
("shuffling") are applied to the generated geometry. Thus, although the tendency to grow 
straight represents the dominant component of the model (i.e., b<1), somatocentric 
tropism may exert a dramatic effect on dendritic shape. Surprisingly, even the asymmetry 
of the dendritic spread (compare front and side views) is preserved after remodeling. 
However, two details are difficult to reproduce with this model: the uniform distribution 
of dendrites in space and other subtle medium-distance correlations among dendritic 
deflections. In order to account for these properties, we may need to consider spatially 
correlated inhomogeneities of the medium and possible short range dendrodendritic 
interactions. 
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4  Di sc uss i on 

The key results of this work is that, according to Bayesian analysis, dendrites of 
hippocampal principal cells display a significant radial tropism. This means that the 
spatial orientation of these neuronal trees can be statistically described as if dendrites 
were repelled from their own soma. This preferential direction is stronger than any 
tendency to grow along a fixed direction independent of the location of the soma. These 
results apply to all dendritic classes, but in general pyramidal cell basal trees (and granule 
cell dendrites) display a bigger somatocentric tropism than apical trees. 
 

 

Figure 2: Dendritic remodeling with somatocentric tropism. A, B: front and side views 
of cell 10861 from Amaral' s archive. C, D: Same views after remodeling with parameters 
a = 0,  b = 0.5,  σ = 0.15 (corresponding to <α> = 17

���������
	���������
��������	����������� �!��	#"��������$	#	
stem were taken in their original orientations; all subsequent experimental orientations 
were disregarded and regenerated from scratch according to the model. 

 

Assuming that dendrites are indeed repelled from their soma during development, what 
could be a plausible mechanism? Principal cells are very densely packed in the 
hippocampus, and their dendrites highly overlap. If repulsion were mediated by a 
diffusible chemical factor, in order for dendrites to be repelled radially from their own 
soma, each neuron should have its own specific chemical marker (a fairly unlikely 
possibility). If the same repulsive factor were released by all neurons, each dendrite 
would be repelled by hundreds of somata, and not just by their own. The resulting 
tropism would be perpendicular to the principal cell layer, i.e. each dendrite would be 
pushed approximately in the same direction, independent of the location of its soma. This 
scenario is in clear contrast with the result of our statistical analysis. Thus, how can a 
growing dendrite sense the location of its own soma? One possibility involves the 
spontaneous spiking activity of neurons during development. A cell that spikes becomes 
unique in its neighborhood for a short period of time. The philopodia of dendritic growth 
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cones could possess voltage-gated receptors to sense transient chemical gradients (e.g., 
pH) created by the spiking cell. Only dendrites that are depolarized during the transient 
chemical gradient (i.e., those belonging to the same spiking cell) would be repelled by it. 
Alternatively, depolarized philopodia could be sensitive to the small voltage difference 
created by the spike in the extracellular space (a voltage that can be recorded by tetrodes). 

The main results obtained with the simple model presented in this work are independent 
of the z coordinate in the morphometric files, i.e. the most error-prone measurement in 
the experimental reconstruction. However, it is important to note that any observed 
deviation of dendritic path from a straight line, including that due to measurement errors, 
causes an increase in the most likely values of parameters a and b. Another possibility is 
that dendrites do grow almost precisely in straight lines, and the measured values of a and 
b reflect distortions of dendritic shapes after development. In order to assess the effect of 
these factors on a and b, we pre-processed the experimental data by adding a gradually 
increasing noise to all coordinates of dendritic sections. Then we were able to extrapolate 
the dependence of a*, b* and <α>* on the amplitude of noise in order to estimate the 
parameter values in the absence of the experimental error (which was conservatively 
taken to be of 0.5 µm). For basal trees of CA3 pyramidal cells, this analysis yielded an 
estimated “corrected” value of b between 0.14 and 0.25, with a remaining much smaller 
than b. Interestingly, our analysis based on extrapolation shows that, regardless of the 
assumed amount of distortion present in the experimental data, given the numbers 
measured for CA3 basal trees, positive initial <α> implies positive initial b. In other 
words, not only measurement errors, but also possible biological distortions of the 
dendritic tree may not be capable of accounting for the observed positivity of the 
parameter b. Although these factors affect our results quantitatively, they do not change 
the statistical significance nor the qualitative trends. However, a more rigorous analysis 
needs to be carried out. Nevertheless, artificially reoriented dendrites according to our 
simple model appear almost as realistic as the original structures, and we could not 
achieve the same result with any choice of parameters in models of distortion without a 
somatocentric tropism. In conclusion, whether the present Bayesian analysis reveals a 
phenomenon of somatodendritic repulsion remains an (experimentally testable) open 
question. What is unquestionable is that the presented model is a significant step forward 
in the formulation of an accurate statistical description of dendritic morphology. 
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