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Abstract 

We propose the framework of mutual information kernels for 
learning covariance kernels, as used in Support Vector machines 
and Gaussian process classifiers, from unlabeled task data using 
Bayesian techniques. We describe an implementation of this frame­
work which uses variational Bayesian mixtures of factor analyzers 
in order to attack classification problems in high-dimensional spaces 
where labeled data is sparse, but unlabeled data is abundant. 

1 Introduction 

Kernel machines, such as Support Vector machines or Gaussian processes, are pow­
erful and frequently used tools for solving statistical learning problems. They are 
based on the use of a kernel function which encodes task prior knowledge in a 
Bayesian manner. In this paper, we propose the framework of mutual informa­
tion (MI) kernels for learning covariance kernels from unlabeled task data using 
Bayesian techniques. This section introduces terms and concepts. We also discuss 
some general ideas for discriminative semi-supervised learning and kernel design 
in this context. In section 2, we define the general framework and give examples. 
We note that the Fisher kernel [4] is a special case of a MI kernel. MI kernels for 
mixture models are discussed in detail. In section 3, we describe an implementation 
for a MI kernel for variational Bayesian mixtures of factor analyzers models and 
show results of preliminary experiments. 

In the semi-supervised classification problem, a labeled dataset Dl 
{(Xl,tl), ... ,(Xm,tm)} as well as an unlabeled set Du = {xm+1 ,""Xm+n} are 
given for training, both i.i.d. drawn from the same unknown distribution, but the 
labels for Du cannot be observed. Here, Xi E I~.P and ti E {-1, +1}.1 Typically, 
m = IDll is rather small, and n = IDul »m. Our aim is to fit models to Du in a 
Bayesian way, thereby extracting (posterior) information, then use this information 
to build a covariance kernel K. Afterwards, K will be plugged into a supervised 
kernel machine, which is trained on the labeled data Dl to perform the classification 
task. 

1 For simplicity, we only discuss binary labels here. 



It is important to distinguish very clearly between these two learning scenarios. 
For fitting Du, we use Bayesian density estimation. After having chosen a model 
family {p(xIOn and a prior distribution P(O) over parameters 0, the posterior 
distribution P(OIDu) ex P(DuIO)P(O), where P(DuIO) = rr::~'~l P(xiIO), encodes 
all information that Du contains about the latent (i.e. unobserved) parameters 0.2 
The other learning scenario is supervised classification, using a kernel machine. 
Such architectures model a smooth latent function y (x) E ~ as a random process, 
together with a classification noise model P(tly).3 The covariance kernel K specifies 
the prior distribution for this process: namely, a-priori, y(x) is assumed to be a 
Gaussian process with zero mean and covariance function K , i.e. K(x(1) , X(2 )) = 

E[y(x(1))Y(X(2))]; see e.g. [10] for details. In the following, we use the notation 
a = (ai)i = (al' ... ,aI)' for vectors , and A = (ai ,j )i,j for matrices respectively. The 
prime denotes transposition. diag a is the matrix with diagonal a and 0 elsewhere. 
N(xlJ.t,~) denotes the Gaussian density with mean J.t and covariance matrix ~. 

Within the standard discriminative Bayesian classification scenario, unlabeled data 
cannot be used. However, it is rather straightforward to modify this scenario by 
introducing the concept of conditional priors (see [6]). If we have a discriminant 
model family {P(tlx; w n, a conditional prior P(w 10) allows to encode prior knowl­
edge and assumptions about how information about P(x) (i.e. about 0) influences 
our assumptions about a-priori probabilities over discriminants w. For example, 
the P(wIO) could be Occam priors, expressing the intuitive fact that for many 
problems, the notion of "simplicity" of a discriminant function depends strongly on 
what is known about the input distribution P(x). For a given problem, it is in gen­
eral not easy to come up with a useful conditional prior. However, once such a prior 
is specified, we can in principle use the same powerful techniques for approximate 
Bayesian inference that have been developed for supervised discriminative settings. 
Semi-supervised techniques that can be seen as employing conditional priors include 
co-training [1], feature selection based on clustering [7] and the Fisher kernel [4]. For 
a probabilistic kernel technique, P( w 10) is fully specified by a covariance function 
K(x(1) , X(2) 10) depending on O. The problem is therefore to find covariance kernels 
which (as GP priors) favour discriminants in some sense compatible with what we 
have learned about the input distribution P(x). 

Kernel techniques can be seen as nonparametric smoothers, based on the (prior) 
assumption that if two input points are "similar" (e.g. "close" under some distance), 
their labels (and latent outputs y) should be highly correlated. Thus, one generic 
way of learning kernels from unlabeled data is to learn a distance between input 
points from the information about P( x). A frequently used assumption about 
how classification labels may depend on P(x) is the cluster hypothesis: we assume 
discriminants whose decision boundaries lie between clusters in P(x) to be a-priori 
more likely than such that label clusters inconsistently. A general way of encoding 
this hypothesis is to learn a distance from P(x) which is consistent with clusters in 
P(x) , i.e. points within the same cluster are closer under this distance than points 
from different clusters. We can then try to embed the learned distance d(x(1), X(2)) 
approximately in an Euclidean space, i.e. learn a mapping ¢ : X r-+ ¢( x) E ~l 
such that d(x(1) , X(2)) :=;::j 11 ¢(x(1)) - ¢(X(2)) II for all pairs from Du. Then, a natural 
kernel function would be K(x(1) , X(2)) = exp( - ,B II¢(x(1)) - ¢(x(2))112). In this 
paper, however, we follow a simpler approach, by considering a similarity measure 

2In practice, computation of P(OIDu) is hardly ever feasible , but powerful approxima­
tion techniques can be used. 

3 A natural choice for binary classification is to represent the log odds log(P(t = 
+1Ix)/P(t = -1Ix)) by y(x) . 



which immediately gives rise to a covariance kernel, without having to compute an 
approximate Euclidean embedding. 

Remark: Our main aim in this paper is to construct kernels that can be learned 
from unlabeled data only. In contrast to this, the task of learning a kernel from 
labeled data is somewhat simpler and can be approached in the following generic 
way: start with a parametric model family {y(x; w)} , with the interpretation that 
y(x;w) models the log odds log(P(t = +llx)/P(t = -llx)). Fitting these models 
to labeled data D[ , we obtain a posterior P(wIDI) . Now, a natural covariance 
kernel for our problem is simply K(x(1),X(2)) = Jy(x(1);w)y(x(2 );w)Q(w)dw, 
where (say) Q(w) <X P(wID[)AP(W)l - A (or an approximation thereof). For A = 0, 
we obtain the prior covariance kernel for our model , while for larger A the kernel 
incorporates more and more posterior information. The kernel proposed in [8] can 
be seen as approximation to this approach. 

2 Mutual Information Kernels 

In this section, we begin by introducing the framework of mutual information ker­
nels. Given a mediator distribution Pm e d (()) over parameters (), we define the joint 
distribution Q(x(1) , X(2)) mediated by Pm e d (()) as 

Q(x(1) , X(2)) = J Pmed (())P(x(1)I())P(x(2)1())d(). (1) 

The sample mutual information between x(1) and X(2) under this distribution is 

(1) (2) _ Q(X(l) , X(2)) 
I(x ,x ) - log Q(x(1))Q(X(2)) ' (2) 

where Q(x) = JQ(x , x)dx. I(x(1) , x(2)) is called the mutual information (MI) 
score. In a very concrete sense, it measures the similarity between x(1 ) and X(2) with 
respect to the generative process represented by the mediator distribution Pm ed (()): 

it is the amount of information they share via the mediator variable () ~ Pm ed (()) . 

Note that Q(x(1), X(2)) can be seen as inner product in a space of functions () f-t R, 
the features of X(k) being (P(x(k)I()))o, weighted by the distribution Pm e d .4 X(k) is 
represented by its likelihood under all possible models. 

Covariance kernels have to satisfy the property of positive definiteness5 , and the MI 
score I does not. However, applying a standard transformation (called exponential 
embedding (EE) here), we arrive at 

K(x(1) X(2)) = e - (I(x(l) ,x(1))+I(x(2) ,x(2))) /2+I(x(1) ,x(2)) = Q(x(1), X(2)) 
, vQ(x(1) , x(1))Q(X(2), X(2)) 

(3) 

EE becomes familiar if we note that it transforms the standard inner product 
x(1)' X(2) into the well-known Radial Basis Function (RBF) kernel6 

(4) 

4When comparing X ( l) , X (2) via the inner product, we are not interested in correlating 
their features uniformly, but rather focus on regions of high volume under Pm e d . 

5 K is positive definite if the matrix (K(X(k ll , X(k2»)hl ,k2 is positive definite for every 
set {x(1 ), ... , X (K ) } of distinct points. 

60ne can show that if j is itself a kernel , and j -+ I< under EE, then 1<(3 is also a 
kernel for all (3 > 0 (see e.g. [3]) . 



or the weighted inner product x(1)'VX(2) into the squared-exponential kernel (e.g. 
[10]). It is easy to show that K in (3) is a valid covariance kernel7 , and we refer to 
it as mutual information (MI) kernel. 

Example: Let P(xIO) = N(xIO, (p/2)I) (spherical Gaussian with mean 0), 
Prned(O) = N(OIO, aI). Then, the MI kernel K is the RBF kernel (4) with 
(3 = 4/(p(4 + pia)). Thus, the RBF kernel is a special case of a MI kernel. 

2.1 Mediator distribution. Model-trust scaling. 

The mediator distribution Prned(O), motivated earlier in this section, should ideally 
encode information about the x generation process, just as the Bayesian posterior 
P(OIDu). On the other hand, we need to be able to control the influence that 
information from sources such as unlabeled data Du can have on the kernel (relying 
too much on such sources results in lack of robustness, see e.g. [6] for details). Here, 
we propose model-trust scaling (MTS) , by setting 

(5) 

Prned varies with A from the (usually vague) prior P(O) (A = 0) towards the sharp 
posterior P(OIDu) (A = n), rendering the Du information (via the model) more 
and more influence upon the kernel K. The concrete effect of MTS on the kernel 
depends on the model family. 

Example (continued): Again, P(xIO) = N(xIO , (p/2)I) , with a flat prior P(O) = 1 
on the mean. Then, P(OIDu) = N(Olx , (p/2n)I), where x = n- 1 L:;~;>~l Xi, and 
Prned(O) = N(Olx, (p/2A)I) (after (5)). Thus, the MI kernel is again the RBF kernel 
(4) with (3 = 2/(p(2 + A)) . For the more flexible model P(xIO) = N(xIJL , ~), ° = 
(JL,~) and the conjugate Jeffreys prior, the MI kernel is computed in [5]. 

If the Bayesian analysis is done with conjugate prior-model pairs, the corresponding 
MI kernel can be computed easily, and for many of these cases, MTS has a very 
simple, analytic form (see [5]). In general, approximation techniques developed for 
Bayesian analysis have to be applied. For example, applying the Laplace approxima­
tion to the computations on a model with flat prior P(O) = 1 results in the Fisher 
kernel [4]8, see e.g. [5]. However, in this paper we favour another approximation 
technique (see section 3). 

2.2 Mutual Information Kernels for Mixture Models 

If we apply the MI kernel framework to mixture models P(x 10, 7T") = Ls 7fsP(x lOs), 
we run into a problem. As mentioned in section 1, we would like our kernel at least 
partly to encode the cluster hypothesis, i.e. K(x(1), X(2)) should be small if x(1), X(2) 

come from different clusters in P(x ),9 but the opposite is true (for not too small 

7 Q(x(1 ), X (2)) is an inner product (therefore a kernel), for the rest of the argument see 
[3], section 5. 

8This was essentially observed by the authors of [4] on workshop talks, but has not 
been published to our knowledge. The fascinating idea of the Fisher kernel has indeed 
been the main motivation and inspiration for this paper. 

9This does not mean that we (a-priori) believe they should have different labels, but 
only that the label (or better: the latent yO) at one of them should not depend strongly 
on yO at the other. 



A). To overcome this problem, we generalize Q(x(1), X(2)): 

S 

Q(X(1),X(2)) = L WS1 ,S2 J P(x(1) IOsJP(X(2) IOs2)Prned(O) dO, (6) 
8} , 82=1 

where W = (W S1 ,S2)Sl ,S2 is symmetric with nonnegative entries and positive elements 
on the diagonal. The MI kernel K is defined as before by (3) , based on the new 
Q. If Prned(O,rr) = ITsPrned(Os)Prned(rr) (which is true for the cases we will be 
interested in), we see that the original MI kernel arises as special case WS1,S2 = 
EPmed[7fS17fs2]' Now, by choosing W = diag(Epm ed[7fs])s, we arrive at a MI kernel 
K which (typically) behaves as expected w.r.t. cluster separation (see figure 1), but 
does not exhibit long-range correlations between joined components. In the present 
work, we restrict ourselves to this diagonal mixture kernel. Note that this kernel 
can be seen as (normalized) mixture of MI kernels over the component models. 

Figure 1: Kernel contours on 2-cluster dataset (A = 5,100,30) 

Figure 1 shows contour plots10 of the diagonal mixture kernel for VB-MoFA (see 
section 3), learned on a 500 cases dataset sampled from two Gaussians with equal 
covariance (see subsection 3.1). We plot K(a , x) for fixed a (marked by a cross) 
against all x , the height between contour lines is 0.1. The left and middle plot 
have the lower cluster's centre as a, with A = 5, A = 100 respectively, the right 
plot's a lies between the cluster centres, A = 30. The effect of MTS can be seen by 
comparing left and middle, note the different sharpness of the slopes towards the 
other cluster and the different sizes and shapes of the "high correlation" regions. As 
seen on the right, points between clusters have highest correlation with other such 
inter-cluster points , a feature that may be very useful for successful discrimination. 

3 Experiments with Mixtures of Factor Analyzers 

In this section, we describe an implementation of a MI kernel , using variational 
Bayesian mixtures of factor analyzers (VB-MoFA) [2] as density models. These are 
able to combine local dimensionality reduction (using noisy linear transformations 
u -+ x from low-dimensional latent spaces) with good global data fit using mixtures. 
VB-MoFA is a variational approximation to Bayesian analysis on these models, able 
to deliver the posterior approximations we require for an MI kernel. 

We employ the diagonal mixture kernel (see subsection 2.2). Instead of implement­
ing MTS analytically, we compute the VB approximation to the true posterior (i.e. 
A = n), then simply apply the scaling to this distribution. P rned (0, rr) factorizes as 
required in subsection 2.2. The integrals J P(x(1) IOs)p(X(2) IOs)Prned(Os) dOs in (6) 

lOProduced using the first-order approximation (see 3) to the MI kernel. Plots using the 
one-step variational approximation (see 3) have a somewhat richer structure. 



are not analytically tractable. Our first idea was to approximate them by applying 
the VB technique once more, ending up with what we called one-step variational 
approximations. Unfortunately, the MI kernel approximation based on these terms 
cannot be shown to be positive definite anymorell ! Thus, in the moment we use a 
less elegant and, we feel , less accurate approximation (details can be found in [5]) 
based on first-order Taylor expansions. 

In the remainder of this section we compare the VB-MoFA kernel with the RBF 
kernel (4) on two datasets, using a Laplace GP classifier (see [10]). In each case 
we sample a training pool, a kernel dataset Du and a test set (mutually exclusive). 
The VB-MoFA diagonal mixture kernel is learned on Du. For a given training set 
size m, a run consists of sampling a training set Dl and a holdout set Dh (both of 
size m) from the training pool, tuning kernel parameters by validation on D h , then 
testing on the test set. We use the same Dl, Du for both kernels. For each training 
set size, we do L = 30 runs. Results are presented by plotting means and 95% t-test 
confidence intervals of test errors over runs. 

3.1 Two Gaussian clusters 

The dataset is sampled from two 2-d Gaussians with same non-spherical covariance 
(see figure 1) , one for each class (the Bayes error is 2.64%) . We use n = 500 points 
for D u , a training pool of 100 and a test set of 500 points. The learning curves in 
figure 2 show that on this simple toy problem, on which the fitted VB-MoFA model 
represents the cluster structure in P(x) almost perfectly, the VB-MoFA MI kernel 
outperforms the RBF kernel for samples sizes n :::; 40. 
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Figure 2: Learning curves on 2-cluster dataset. Left: RBF kernel; right: MI kernel 

3.2 Handwritten Digits (MNIST): Twos against threes 

We report results of preliminary experiments using the subset of twos and threes 
of the MNIST Handwritten Digits database12 . Here, n = IDul = 2000, the training 
pool contains 8089, the test set 2000 cases. We employ a VB-MoFA model with 20 
components, fitted to Du. We use a very simple baseline (BL) algorithm (see [6], 
section 2.3) based on the component densities from the VB-MoFA model13 , which 

llThanks to an anonymous reviewer for pointing out this flaw. 
12The 28 x 28 images were downsampled to size 8 x 8. 
13The estimates P(xls) are obtained by integrating out the parameters (}s using the 

variational posterior approximation. The integral is not analytic, and we use a one-step 
variational approximation to it . 



allows us to assess the "purity" of the component clusters w.r.t. the labels1\ this 
algorithm is the only one not based on a kernel. Furthermore, we show results for 
the one-step variational approximation to the MI kernel15 (MIOLD). The learning 
curves are shown in figure 3. 
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Figure 3: Learning curves on MNIST twos/threes. Upper left: RBF kernel ; upper 
middle: Baseline method; upper right: VB-MoFA MI kernel (first-order approx.) ; 
lower left: VB-MoFA MI "kernel" (one-step var. approx.) 

The results are disappointing. The fact that the first-order approximation to the 
MI kernel performs worse than the one-step variational approximation (although 
the latter may fail to be positive definite) , indicates that the former is a poorer 
approximation. The latter renders results close to the baseline method, while the 
smoothing RBF kernel makes much better use of a growing number of labeled ex­
amples16 This indicates that the conditional prior, as represented by the VB-MoFA 
MI kernel, behaves nonsmooth and overrides label information in regions where it 
should not. We suspect this problem to be related to the high dimensionality of 
the input space, in which case probability densities tend to have a large dynamic 
range, and mixture component responsibility estimates tend to behave very nons­
mooth. Thus, it seems to be necessary to extend the basic MI kernel framework 
by new scaling mechanisms in order to produce a smoother encoding of the prior 
assumptions. 

14The baseline algorithm is based on the assumption that, given the component index 
s, the input point x and the label t are independent. Only the conditional probabilities 
P(t ls) are learned, while P(xls) and pes) is obtained from the VB-MoFA model fitted to 
unlabeled data only. Thus, success/failure of this method should be closely related to the 
degree of purity of the component clusters w.r.t . the labels. 

15This is somewhat inconsistent, since we use a kernel function which might not be 
positive definite in a context (GP classification) which requires a covariance function. 

16Note also that RBF kernel matrices can be evaluated significantly faster than such 
using the VB-MoFA MI kernel. 



4 Related work. Discussion 

The present work is probably most closely related to the Fisher kernel (see sub­
section 2.1). The arguments concerning mixture models (see subsection 2.2) apply 
there as well. Haussler [3] contains a wealth of material about kernel design for dis­
crete objects x. Watkins [9] mentions that expressions like Q in (1) are valid kernels 
for discrete x and countable parameter spaces. Very recently we came across [11], 
which essentially describes a special case of the diagonal mixture kernel (see sub­
section 2.2) for Gaussian components with diagonal covariances17 . The author calls 
Q a stochastic equivalence predicate. He is interested in distance learning, does not 
apply his method to kernel machines and does not give a Bayesian interpretation. 

We have presented a general framework for kernel learning from unlabeled data and 
described an approximate implementation using VB-MoFA models. A straightfor­
ward application of this technique to high-dimensional real-world data did not prove 
successful, and in future work we will explore new ideas for extending the basic MI 
kernel framework in order to be able to deal with high-dimensional input spaces. 
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