
An Efficient, Exact Algorithm for Solving 
Tree-Structured Graphical Games 

Michael L. Littman 
AT&T Labs- Research 

Florham Park, NJ 07932-0971 
mlittman©research.att.com 

Michael Kearns 
Department of Computer & Information Science 

University of Pennsylvania 
Philadelphia, PA 19104-6389 

mkearns©cis.upenn.edu 

Satinder Singh 
Syntek Capital 

New York, NY 10019-4460 
baveja©cs. colorado. edu 

Abstract 

We describe a new algorithm for computing a Nash equilibrium in 
graphical games, a compact representation for multi-agent systems 
that we introduced in previous work. The algorithm is the first 
to compute equilibria both efficiently and exactly for a non-trivial 
class of graphical games. 

1 Introduction 

Seeking to replicate the representational and computational benefits that graph­
ical models have provided to probabilistic inference, several recent works 
have introduced graph-theoretic frameworks for the study of multi-agent sys­
tems (La Mura 2000; Koller and Milch 2001; Kearns et al. 2001). In the simplest 
of these formalisms, each vertex represents a single agent, and the edges represent 
pairwise interaction between agents. As with many familiar network models, the 
macroscopic behavior of a large system is thus implicitly described by its local inter­
actions, and the computational challenge is to extract the global states of interest. 
Classical game theory is typically used to model multi-agent interactions, and the 
global states of interest are thus the so-called Nash equilibria, in which no agent 
has a unilateral incentive to deviate. 

In a recent paper (Kearns et al. 2001), we introduced such a graphical formalism for 
multi-agent game theory, and provided two algorithms for computing Nash equilib­
ria when the underlying graph is a tree (or is sufficiently sparse). The first algorithm 



computes approximations to all Nash equilibria, in time polynomial in the size of 
the representation and the quality of the desired approximation. A second and 
related algorithm computes all Nash equilibria exactly, but in time exponential in 
the number of agents. We thus left open the problem of efficiently computing exact 
equilibria in sparse graphs. 

In this paper, we describe a new algorithm that solves this problem. Given as input 
a graphical game that is a tree, the algorithm computes in polynomial time an ex­
act Nash equilibrium for the global multi-agent system. The main advances involve 
the definition of a new data structure for representing "upstream" or partial Nash 
equilibria, and a proof that this data structure can always be extended to a global 
equilibrium. The new algorithm can also be extended to efficiently accommodate 
parametric representations of the local game matrices, which are analogous to para­
metric conditional probability tables (such as noisy-OR and sigmoids) in Bayesian 
networks. 

The analogy between graphical models for multi-agent systems and probabilistic 
inference is tempting and useful to an extent. The problem of computing Nash 
equilibria in a graphical game, however, appears to be considerably more difficult 
than computing conditional probabilities in Bayesian networks. Nevertheless, the 
analogy and the work presented here suggest a number of interesting avenues for 
further work in the intersection of game theory, network models, probabilistic in­
ference, statistical physics, and other fields. 

The paper is organized as follows. Section 2 introduces graphical games and other 
necessary notation and definitions. Section 3 presents our algorithm and its analysis , 
and Section 4 gives a brief conclusion. 

2 Preliminaries 

An n-player, two-action 1 game is defined by a set of n matrices Mi (1 ~ i ~ n), 
each with n indices. The entry Mi(Xl, ... ,xn ) = Mi(X) specifies the payoff to player 
i when the joint action of the n players is x E {O, I} n. Thus, each Mi has 2n entries. 
If a game is given by simply listing the 2n entries of each of the n matrices, we will 
say that it is represented in tabular form. 

The actions ° and 1 are the pure strategies of each player, while a mixed strategy 
for player i is given by the probability Pi E [0, 1] that the player will play 1. For 
any joint mixed strategy, given by a product distribution p, we define the expected 
payoff to player i as Mi(i/) = Ex~p[Mi(X)], where x'" pindicates that each Xj is 1 
with probability Pj and ° with probability 1 - Pj. 

We use p[i : P:] to denote the vector that is the same as p except in the ith 
component, where the value has been changed to P:. A Nash equilibrium for the 
game is a mixed strategy p such that for any player i, and for any value P: E 
[0,1], Mi(i/) ::::: Mi(p[i : pm. (We say that Pi is a best response to jJ.) In other 
words, no player can improve its expected payoff by deviating unilaterally from a 
Nash equilibrium. The classic theorem of Nash (1951) states that for any game, 
there exists a Nash equilibrium in the space of joint mixed strategies (product 
distri butions). 

An n-player graphical game is a pair (G, M), where G is an undirected graph2 on n 

1 At present , no polynomial-time algorithm is known for finding Nash equilibria even in 
2-player games with more than two actions, so we leave the extension of our work to the 
multi-action setting for future work. 

2The directed tree-structured case is trivial and is not addressed in this paper. 



vertices and M is a set of n matrices Mi (1 ::; i ::; n), called the local game matrices . 
Player i is represented by a vertex labeled i in G. We use N G (i) ~ {I, ... , n} 
to denote the set of neighbors of player i in G- those vertices j such that the 
undirected edge (i , j) appears in G. By convention, NG(i) always includes i itself. 
The interpretation is that each player is in a game with only his neighbors in G. 
Thus, if ING(i) I = k, the matrix Mi has k indices, one for each player in NG(i) , and 
if x E [0, Ilk, Mi(X) denotes the payoff to i when his k neighbors (which include 
himself) play x. The expected payoff under a mixed strategy jJ E [0 , Ilk is defined 
analogously. Note that in the two-action case, Mi has 2k entries, which may be 
considerably smaller than 2n. 

Since we identify players with vertices in G, it will be easier to treat vertices sym­
bolically (such as U, V and W) rather than by integer indices. We thus use Mv to 
denote the local game matrix for the player identified with vertex V. 

Note that our definitions are entirely representational , and alter nothing about the 
underlying game theory. Thus, every graphical game has a Nash equilibrium. Fur­
thermore, every game can be trivially represented as a graphical game by choosing 
G to be the complete graph and letting the local game matrices be the original 
tabular form matrices. Indeed, in some cases, this may be the most compact graph­
ical representation of the tabular game. However , exactly as for Bayesian networks 
and other graphical models for probabilistic inference, any game in which the local 
neighborhoods in G can be bounded by k « n, exponential space savings accrue. 
The algorithm presented here demonstrates that for trees, exponential computa­
tional benefits may also be realized. 

3 The Algorithm 

If (G, M) is a graphical game in which G is a tree, then we can always designate 
some vertex Z as the root. For any vertex V, the single neighbor of Von the path 
from V to Z shall be called the child of V, and the (possibly many) neighbors of V 
on paths towards the leaves shall be called the parents of V. Our algorithm consists 
of two passes: a downstream pass in which local data structures are passed from the 
leaves towards the root, and an upstream pass progressing from the root towards 
the leaves. 

Throughout the ensuing discussion, we consider a fixed vertex V with parents 
UI , ... , Uk and child W. On the downstream pass of our algorithm, vertex V will 
compute and pass to its child W a breakpoint policy, which we now define. 

Definition 1 A breakpoint policy for V consists of an ordered set of W -breakpoints 
Wo = ° < WI < W2 < ... < Wt-I < Wt = 1 and an associated set of V-values 
VI , . .. ,Vt· The interpretation is that for any W E [0,1], if Wi-I < W < Wi for some 
index i and W plays w, then V shall play Vii and if W = Wi for some index i , then 
V shall play any value between Vi and Vi+I. We say such a breakpoint policy has 
t - 1 breakpoints. 

A breakpoint policy for V can thus be seen as assigning a value (or range of values) 
to the mixed strategy played by V in response to the play of its child W. In a slight 
abuse of notation, we will denote this breakpoint policy as a function Fv(w), with 
the understanding that the assignment V = Fv(w) means that V plays either the 
fixed value determined by the breakpoint policy (in the case that W falls between 
breakpoints), or plays any value in the interval determined by the breakpoint policy 
(in the case that W equals some breakpoint). 



Let G V denote the subtree of G with root V, and let M~=w denote the subset 
of the set of local game matrices M corresponding to the vertices in GV , except 
that the matrix M v is collapsed one index by setting W = w, thus marginalizing 
W out. On its downstream pass, our algorithm shall maintain the invariant that if 
we set the child W = w, then there is a Nash equilibrium for the graphical game 
(Gv , M~=w) (an upstream Nash) in which V = Fv(w). If this property is satisfied 
by Fv(w), we shall say that Fv(w) is a Nash breakpoint policy for V. Note that 
since (Gv, M~=w) is just another graphical game, it of course has (perhaps many) 
Nash equilibria, and V is assigned some value in each. The trick is to commit 
to one of these values (as specified by Fv (w)) that can be extended to a Nash 
equilibrium for the entire tree G, before we have even processed the tree below V . 
Accomplishing this efficiently and exactly is one of the main advances in this work 
over our previous algorithm (Kearns et al. 2001). 

The algorithm and analysis are inductive: V computes a Nash breakpoint policy 
Fv(w) from Nash breakpoint policies FUl (v), ... , FUk (v) passed down from its par­
ents (and from the local game matrix Mv). The complexity analysis bounds the 
number of breakpoints for any vertex in the tree. We now describe the inductive 
step and its analysis. 

3.1 Downstream Pass 

For any setting it E [0, l]k for -0 and w E [0,1] for W, let us define 

~v(i1,w) == Mv(l,it,w) - Mv(O,it,w). 

The sign of ~v(it, w) tells us V's best response to the setting of the local neighbor­
hood -0 = it, W = w; positive sign means V = 1 is the best response, negative that 
V = 0 is the best response, and 0 that V is indifferent and may play any mixed 
strategy. Note also that we can express ~v(it,w) as a linear function of w: 

~v(it,w) = ~v(it, O) + w(~v(it, 1) - ~v(it, 0)). 

For the base case, suppose V is a leaf with child W; we want to describe the Nash 
breakpoint policy for V. If for all w E [0,1], the function ~v(w) is non-negative 
(non-positive, respectively), V can choose 1 (0, respectively) as a best response 
(which in this base case is an upstream Nash) to all values W = w. Otherwise, 
~ v (w) crosses the w-axis, separating the values of w for which V should choose 
1, 0, or be indifferent (at the crossing point). Thus, this crossing point becomes 
the single breakpoint in Fv(w). Note that if V is indifferent for all values of w, we 
assume without loss of generality that V plays l. 

The following theorem is the centerpiece of the analysis. 

Theorem 2 Let vertex V have parents UI , ... ,Uk and child W, and assume V has 
received Nash breakpoint policies FUi (v) from each parent Ui . Then V can efficiently 
compute a Nash breakpoint policy Fv (w). The number of breakpoints is no more 
than two plus the total number of breakpoints in the FUi (v) policies. 

Proof: Recall that for any fixed value of v, the breakpoint policy FUi (v) specifies 
either a specific value for Ui (if v falls between two breakpoints of FUi (v)) , or a range 
of allowed values for Ui (if v is equal to a breakpoint). Let us assume without loss of 
generality that no two FUi (v) share a breakpoint, and let Vo = 0 < VI < ... < Vs = 1 
be the ordered union of the breakpoints of the FUi (v). Thus for any breakpoint Vi, 
there is at most one distinguished parent Uj (that we shall call the free parent) for 
which Fu; (Vi) specifies an allowed interval of play for Uj . All other Ui are assigned 



fixed values by Fu; (ve). For each breakpoint Ve, we now define the set of values for 
the child W that, as we let the free parent range across its allowed interval, permit 
V to play any mixed strategy as a best response. 

Definition 3 Let Vo = 0 < VI < ... < Vs = 1 be the ordered union of the break­
points of the parent policies Fu; (v). Fix any breakpoint Ve, and assume without loss 
of generality that UI is the free parent of V for V = Ve. Let [a, b] be the allowed 
interval ofUI specified by FUI (ve), and letui = Fu;(ve) for all 2 :::; i:::; k. We define 

We = {w E [0,1]: (:lUI E [a,b])6.v(UI,U2, ... ,Uk,W) = O}. 

In words, We is the set of values that W can play that allow V to play any mixed 
strategy, preserving the existence of an upstream Nash from V given W = w. 

The next lemma, which we state without proof and is a special case of Lemma 6 in 
Kearns et al. (2001), limits the complexity of the sets We. It also follows from the 
earlier work that We can be computed in time proportional to the size of V's local 
game matrix - O(2k) for a vertex with k parents. 

We say that an interval [a, b] ~ [0 , 1] is floating if both a -I- 0 and b -I- 1. 

Lemma 4 For any breakpoint Ve, the set We is either empty, a single interval, or 
the union of two intervals that are not floating. 

We wish to create the (inductive) Nash breakpoint policy Fv(w) from the sets We 
and the Fu; policies. The idea is that if w E We for some breakpoint index e, 
then by definition of We, if W plays wand the Uis play according to the setting 
determined by the Fu; policies (including a fixed setting for the free parent of V), 
any play by V is a best response-so in particular, V may play the breakpoint value 
Ve, and thus extend the Nash solution constructed, as the UiS can also all be best 
responses. For b E {O, I}, we define W b as the set of values w such that if W = w 
and the Uis are set according to their breakpoint policies for V = b, V = b is a 
best response. To create Fv (w) as a total function, we must first show that every 
w E [0, 1] is contained in some We or WO or WI. 

Lemma 5 Let Vo = 0 < VI < ... < Vs = 1 be the ordered union of the breakpoints 
of the Fu; (v) policies. Then for any value w E [0, 1], either w E wb for some 
bE {O, I} , or there exists an index e such that wE W e. 

Proof: Consider any fixed value of w, and for each open interval (vi> vj+d de­
termined by adjacent breakpoints, label this interval by V 's best response (0 or 
1) to W = wand 0 set according to the Fu; policies for this interval. If either 
the leftmost interval [O ,vd is labeled with 0 or the rightmost interval [vs-I , I] is 
labeled with 1, then w is included in WO or WI , respectively (V playing 0 or 1 
is a best response to what the Uis will play in response to a 0 or 1). Otherwise, 
since the labeling starts at 1 on the left and ends at 0 on the right, there must be 
a breakpoint Ve such that V's best response changes over this breakpoint. Let Ui 

be the free parent for this breakpoint. By continuity, there must be a value of Ui 

in its allowed interval for which V is indifferent to playing 0 or 1, so w E We. This 
completes the proof of Lemma 5. 

Armed with Lemmas 4 and 5, we can now describe the construction of Fv(w). Since 
every w is contained in some We (Lemma 5), and since every We is the union of at 
most two intervals (Lemma 4), we can uniquely identify the set WeI that covers the 
largest (leftmost) interval containing w = 0; let [0 , a] be this interval. Continuing 
in the same manner to the right, we can identify the unique set We2 that contains 



v7r----- --- ----- --- ----- --- ----- --- ----- -------- - r------

v6 - ------~-------- - -- - -- - -- - -- - ----- ------------ - --

V v5 ------------------------------ - ,-------'---------------
v4 - ------------- ------------ ---------------------

v3f------.- ---------------------- -----------------------------

v2 _______ --'-______ ----L _________________________________ _ 

vI ----------------------------------------------------

w 
Figure 1: Example of the inductive construction of Fv(w). The dashed horizontal 
lines show the vrbreakpoints determined by the parent policies Fu; (v). The solid 
intervals along these breakpoints are the sets We. As shown in Lemma 4, each of 
these sets consists of either a single (possibly floating) interval, or two non-floating 
intervals. As shown in Lemma 5, each value of w is covered by some We. The 
construction of Fv(w) (represented by a thick line) begins on the left, and always 
next "jumps" to the interval allowing greatest progress to the right. 

w = a and extends farthest to the right of a. Any overlap between We 1 and We2 
can be arbitrarily assigned coverage by We 1 , and We2 "trimmed" accordingly; see 
Figure 1. This process results in a Nash breakpoint policy Fv(w). 

Finally, we bound the number of breakpoints in the Fv (w) policy. By construction, 
each of its breakpoints must be the rightmost portion of some interval in WO, WI, or 
some We. After the first breakpoint, each of these sets contributes at most one new 
breakpoint (Lemma 4). The final breakpoint is at w = 1 and does not contribute 
to the count (Definition 1). There is at most one We for each breakpoint in each 
Fu; (v) policy, plus WO and WI, plus the initial leftmost interval and minus the 
final breakpoint, so the total breakpoints in Fv(w) can be no more than two plus 
the total number of breakpoints in the Fu; (v) policies. Therefore, the root of a size 
n tree will have a Nash breakpoint policy with no more than 2n breakpoints. 

This completes the proof of Theorem 2. 

3.2 Upstream Pass 

The downstream pass completes when each vertex in the tree has had its Nash 
breakpoint policy computed. For simplicity of description, imagine that the root of 
the tree includes a dummy child with constant payoffs and no influence on the root, 
so the root's breakpoint policy has the same form as the others in the tree. 

To produce a Nash equilibrium, our algorithm performs an upstream pass over 
the tree, starting from the root. Each vertex is told by its child what value to 
play, as well as the value the child itself will play. The algorithm ensures that all 
downstream vertices are Nash (playing best response to their neighbors). Given 
this information, each vertex computes a value for each of its parents so that its 



own assigned action is a best response. This process can be initiated by the dummy 
vertex picking an arbitrary value for itself, and selecting the root's value according 
to its Nash breakpoint policy. 

Inductively, we have a vertex V connected to parents U1 , ... , Uk (or no parents if 
V is a leaf) and child W. The child of V has informed V to chose V = v and that 
it will play W = w. To decide on values for V's parents to enforce V playing a best 
response, we can look at the Nash breakpoint policies FUi (v), which provide a value 
(or range of values) for Ui as a function of v that guarantee an upstream Nash. The 
value v can be a breakpoint for at most one Ui . For each Ui , if v is not a breakpoint 
in FUi (v) , then Ui should be told to select Ui = FUi (v). If v is a breakpoint in 
FUi (v), then Ui's value can be computed by solving ~V(Ul "'" Ui,"" Uk, w) = 0; 
this is the value of Ui that makes V indifferent. The equation is linear in Ui and has 
a solution by the construction of the Nash breakpoint policies on the downstream 
pass. Parents are passed their assigned values as well as the fact that V = v. 

When the upstream pass completes, each vertex has a concrete choice of action such 
that jointly they have formed a Nash equilibrium. 

The total running time of the algorithm can be bounded as follows. Each vertex 
is involved in a computation in the downstream pass and in the upstream pass. 
Let t be the total number of breakpoints in the breakpoint policy for a vertex V 
with k parents. Sorting the breakpoints and computing the W£ sets and computing 
the new breakpoint policy can be completed in 0 (t log t + t2k ). In the upstream 
pass, only one breakpoint is considered, so 0 (log t + 2k) is sufficient for passing 
breakpoints to the parents. By Theorem 2, t :S 2n , so the entire algorithm executes 
in time O(n2 10g n + n22k), where k is the largest number of neighbors of any vertex 
in the network. 

The algorithm can be implemented to take advantage of local game matrices pro­
vided in a parameterized form. For example, if each vertex's payoff is solely a 
function of the number of 1s played by the vertex's neighbors, the algorithm takes 
O(n2 10gn + n 2 k), eliminating the exponential dependence on k. 

4 Conclusion 

The algorithm presented in this paper finds a single Nash equilibrium for a game 
represented by a tree-structured network. By building representations of all equilib­
ria, our earlier algorithm (Kearns et al. 2001) was able to select equilibria efficiently 
according to criteria like maximizing the total expected payoff for all players. The 
polynomial-time algorithm described in this paper throws out potential equilibria 
at many stages, most significantly during the construction of the Nash breakpoint 
policies. An interesting area for future work is to manipulate this process to produce 
equilibria with particular properties. 

References 
Michael Kearns, Michael L. Littman, and Satinder Singh. Graphical models for game 

theory. In Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence 
(UAI), pages 253- 260, 200l. 

Daphne Koller and Brian Milch. Multi-agent influence diagrams for representing and 
solving games. Submitted, 2001. 

Pierfrancesco La Mura. Game networks. In Proceedings of the 16th Conference on Uncer­
tainty in Artificial Intelligence (UAI), pages 335- 342, 2000. 

J . F. Nash. Non-cooperative games. Annals of Math ematics, 54:286- 295, 1951. 


