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Abstract

This paper presents a method for obtaining class membership probability esti-
mates for multiclass classification problems by coupling the probability estimates
produced by binary classifiers. This is an extension for arbitrary code matrices
of a method due to Hastie and Tibshirani for pairwise coupling of probability
estimates. Experimental results with Boosted Naive Bayes show that our method
produces calibrated class membership probability estimates, while having similar
classification accuracy as loss-based decoding, a method for obtaining the most
likely class that does not generate probability estimates.

1 Introduction

The two most well-known approaches for reducing a multiclass classification problem to
a set of binary classification problems are known as one-against-all and all-pairs. In the
one-against-all approach, we train a classifier for each of the classes using as positive ex-
amples the training examples that belong to that class, and as negatives all the other training
examples. In the all-pairs approach, we train a classifier for each possible pair of classes
ignoring the examples that do not belong to the classes in question.

Although these two approaches are the most obvious, Allwein et al. [Allwein et al., 2000]
have shown that there are many other ways in which a multiclass problem can be decom-
posed into a number of binary classification problems. We can represent each such decom-
position by a code matrix M

����� 1 � 0 ��� 1 � k 	 l , where k is the number of classes and l is
the number of binary classification problems. If M 
 c � b ���� 1 then the examples belong-
ing to class c are considered to be positive examples for the binary classification problem
b. Similarly, if M 
 c � b ��� � 1 the examples belonging to c are considered to be negative
examples for b. Finally, if M 
 c � b ��� 0 the examples belonging to c are not used in training
a classifier for b.

For example, in the 3-class case, the all-pairs code matrix is

b1 b2 b3
c1 � 1 � 1 0
c2 � 1 0 � 1
c3 0 � 1 � 1

This approach for representing the decomposition of a multiclass problem into binary prob-



lems is a generalization of the Error-Correcting Output Codes (ECOC) scheme proposed
by Dietterich and Bakiri [Dietterich and Bakiri, 1995]. The ECOC scheme does not allow
zeros in the code matrix, meaning that all examples are used in each binary classification
problem.

Orthogonal to the problem of choosing a code matrix for reducing multiclass to binary is
the problem of classifying an example given the labels assigned by each binary classifier.
Given an example x, Allwein et al. [Allwein et al., 2000] first create a vector v of length l
containing the � -1,+1 � labels assigned to x by each binary classifier. Then, they compute
the Hamming distance between v and each row of M, and find the row c that is closest to v
according to this metric. The label c is then assigned to x. This method is called Hamming
decoding.

For the case in which the binary classifiers output a score whose magnitude is a mea-
sure of confidence in the prediction, they use a loss-based decoding approach that takes
into account the scores to calculate the distance between v and each row of M, instead
of using the Hamming distance. This method is called loss-based decoding. Allwein et
al. [Allwein et al., 2000] present theoretical and experimental results indicating that this
method is better than Hamming decoding.

However, both of these methods simply assign a class label to each example. They do not
output class membership probability estimates P̂ 
 C � c �X � x � for an example x. These
probability estimates are important when the classification outputs are not used in isolation
and must be combined with other sources of information, such as misclassification costs
[Zadrozny and Elkan, 2001a] or the outputs of another classifier.

Given a code matrix M and a binary classification learning algorithm that outputs probabil-
ity estimates, we would like to couple the estimates given by each binary classifier in order
to obtain class probability membership estimates for the multiclass problem.

Hastie and Tibshirani [Hastie and Tibshirani, 1998] describe a solution for obtaining prob-
ability estimates P̂ 
 C � c �X � x � in the all-pairs case by coupling the pairwise probability
estimates, which we describe in Section 2. In Section 3, we extend the method to arbitrary
code matrices. In Section 4 we discuss the loss-based decoding approach in more detail
and compare it mathematically to the method by Hastie and Tibshirani. In Section 5 we
present experimental results.

2 Coupling pairwise probability estimates

We are given pairwise probability estimates ri j 
 x � for every class i �� j, obtained by training
a classifier using the examples belonging to class i as positives and the examples belonging
to class j as negatives. We would like to couple these estimates to obtain a set of class
membership probabilities pi 
 x � � P 
 C � ci �X � x � for each example x. The ri j are related
to the pi according to

ri j � x ��� P � C � i �C � i � C � j � X � x �	� pi � x �
pi � x � � p j � x �

Since we additionally require that ∑i pi 
 x � � 1, there are k
� 1 free parameters and k 
 k �

1 ��
 2 constraints. This implies that there may not exist pi satisfying these constraints.

Let ni j be the number of training examples used to train the binary classifier that predicts
ri j. In order to find the best approximation r̂i j 
 x � � p̂i 
 x ��
 
 p̂i 
 x � � p̂ j 
 x � � , Hastie and
Tibshirani fit the Bradley-Terrey model for paired comparisons [Bradley and Terry, 1952]
by minimizing the average weighted Kullback-Leibler distance l 
 x � between ri j 
 x � and



r̂i j 
 x � for each x, given by

l � x � � ∑
i
�� j

ni j

�
ri j � x � log

ri j � x �
r̂i j � x � � � 1 � ri j � x � � log

1 � ri j � x �
1 � r̂i j � x ���

The algorithm is as follows:

1. Start with some guess for the p̂i � x � and corresponding r̂i j � x � .
2. Repeat until convergence:

(a) For each i � 1 � 2 ������� � k
p̂i � x �
	 p̂i � x � ∑ j

�� i ni jri j � x �
∑ j

�� i ni j r̂i j � x �
(b) Renormalize the p̂i � x � .
(c) Recompute the r̂i j � x � .

Hastie and Tibshirani [Hastie and Tibshirani, 1998] prove that the Kullback-Leibler dis-
tance between ri j 
 x � and r̂i j 
 x � decreases at each step. Since this distance is bounded below
by zero, the algorithm converges. At convergence, the r̂i j are consistent with the p̂i. The
class predicted for each example x is ĉ 
 x � � argmax p̂i 
 x � .
Hastie and Tibshirani also prove that the p̂i 
 x � are in the same order as the non-iterative
estimates p̃i 
 x ��� ∑ j �� i ri j 
 x � for each x. Thus, the p̃i 
 x � are sufficient for predicting the
most likely class for each example. However, as shown by Hastie and Tibshirani, they
are not accurate probability estimates because they tend to underestimate the differences
between the p̂i 
 x � values.

3 Extending the Hastie-Tibshirani method to arbitrary code matrices

For an arbitrary code matrix M, instead of having pairwise probability estimates, we have
an estimate rb 
 x � for each column b of M, such that

rb � x �	� P ��
c � I

C � c � 
c � I � J

C � c � X � x �	� ∑c � I pc � x �
∑c � I � J pc � x �

where I and J are the set of classes for which M 
�� � b � � 1 and M 
�� � b � � � 1, respectively.

We would like to obtain a set of class membership probabilities pi 
 x � for each example
x compatible with the rb 
 x � and subject to ∑i pi 
 x ��� 1. In this case, the number of free
parameters is k

� 1 and the number of constraints is l � 1, where l is the number of columns
of the code matrix.

Since for most code matrices l is greater than k � 1, in general there is no exact solution to
this problem. For this reason, we propose an algorithm analogous to the Hastie-Tibshirani
method presented in the previous section to find the best approximate probability estimates
p̂i(x) such that

r̂b � x �	� ∑c � I p̂c � x �
∑c � I � J p̂c � x � �

and the Kullback-Leibler distance between r̂b 
 x � and rb 
 x � is minimized.

Let nb be the number of training examples used to train the binary classifier that corre-
sponds to column b of the code matrix. The algorithm is as follows:

1. Start with some guess for the p̂i � x � and corresponding r̂b � x � .
2. Repeat until convergence:



(a) For each i � 1 � 2 ������� � k
p̂i � x � 	 p̂i � x � ∑b s � t � M � i � b � � 1 nbrb � x � � ∑b s � t � M � i � b � ��� 1 nb � 1 � rb � x � �

∑b s � t � M � i � b � � 1 nb r̂b � x � � ∑b s � t � M � i � b � ��� 1 nb � 1 � r̂b � x � �
(b) Renormalize the p̂i � x � .
(c) Recompute the r̂b � x � .

If the code matrix is the all-pairs matrix, this algorithm reduces to the original method by
Hastie and Tibshirani.

Let B � i be the set of matrix columns for which M 
 i � � �� � 1 and B � i be the set of matrix
columns for which M 
 c ��� ��� � 1. By analogy with the non-iterative estimates suggested
by Hastie and Tibshirani, we can define non-iterative estimates p̃i 
 x � � ∑b 	 B 
 i

rb 
 x � �
∑b 	 B � i


 1 � rb 
 x � � . For the all-pairs code matrix, these estimates are the same as the ones
suggested by Hastie and Tibshirani. However, for arbitrary matrices, we cannot prove that
the non-iterative estimates predict the same class as the iterative estimates.

4 Loss-based decoding

In this section, we discuss how to apply the loss-based decoding method to classifiers that
output class membership probability estimates. We also study the conditions under which
this method predicts the same class as the Hastie-Tibshirani method, in the all-pairs case.

The loss-based decoding method [Allwein et al., 2000] requires that each binary classifier
output a margin score satisfying two requirements. First, the score should be positive if
the example is classified as positive, and negative if the example is classified as negative.
Second, the magnitude of the score should be a measure of confidence in the prediction.

The method works as follows. Let f 
 x � b � be the margin score predicted by the classifier
corresponding to column b of the code matrix for example x. For each row c of the code
matrix M and for each example x, we compute the distance between f and M 
 c ��� � as

dL � x � c �	�
l

∑
b � 1

L � M � c � b � f � x � b � � (1)

where L is a loss function that is dependent on the nature of the binary classifier and M 
 c � b �
= 0, 1 or � 1. We then label each example x with the label c � for which dL is minimized.

If the binary classification learning algorithm outputs scores that are probability estimates,
they do not satisfy the first requirement because the probability estimates are all between 0
and 1. However, we can transform the probability estimates rb 
 x � output by each classifier
b into margin scores by subtracting 1 
 2 from the scores, so that we consider as positives
the examples x for which rb 
 x � is above 1/2, and as negatives the examples x for which
rb 
 x � is below 1/2.

We now prove a theorem that relates the loss-based decoding method to the Hastie-
Tibshirani method, for a particular class of loss functions.

Theorem 1 The loss-based decoding method for all-pairs code matrices predicts the same
class label as the iterative estimates p̂i 
 x � given by Hastie and Tibshirani, if the loss function
is of the form L 
 y � � � ay, for any a  0.

Proof: We first show that, if the loss function is of the form L 
 y �� �
ay, the loss-based

decoding method predicts the same class label as the non-iterative estimates p̃i 
 x � , for the
all-pairs code matrix.



Dataset #Training Examples #Test Examples #Attributes #Classes
satimage 4435 2000 36 7
pendigits 7494 3498 16 10
soybean 307 376 35 9

Table 1: Characteristics of the datasets used in the experiments.

The non-iterative estimates p̃i 
 x � are given by

p̃c � x �	� ∑
b � B � c

rb � x � � ∑
b � B � c

� 1 � rb � x � �	� ∑
b � B � c

rb � x � � ∑
b � B � c

rb � x � � �B � c � �

where B � c and B � c are the sets of matrix columns for which M 
 c ��� � � � 1 and M 
 c � � � �� 1, respectively.

Considering that L 
 y � � � ay and f 
 x � b � � rb 
 x � � 1 
 2, and eliminating the terms for which
M 
 c � b � � 0, we can rewrite Equation 1 as

d � x � c � � ∑
b � B � c

� a � rb � x � � 1
2
� � ∑

b � B � c

a � rb � x � � 1
2
� � � a

�
∑

b � B � c

rb � x � � ∑
b � B � c

rb � x � � 1
2 � �B � c � � �B � c � ��� �

For the all-pairs code matrix the following relationship holds: 1 
 2 
 �B � c � � �B � c � � � �B � c � �
 k � 1 � 
 2, where k is the number of classes. So, the distance d 
 x � c � is

d � x � c ��� � a

�
∑

b � B � c

rb � x � � ∑
b � B � c

rb � x � � �B � c � � � k � 1 ��� 2 � �
It is now easy to see that the class c � 
 x � which minimizes d 
 x � c � for example x, also max-
imizes p̃c 
 x � . Furthermore, if d 
 x � i �	� d 
 x � j � then p 
 x � i �  p 
 x � j � , which means that the
ranking of the classes for each example is the same.

Since the non-iterative estimates p̃c 
 x � are in the same order as the iterative estimates p̂c 
 x � ,
we can conclude that the Hastie-Tibshirani method is equivalent to the loss-based decoding
method if L 
 y � � �

ay, in terms of class prediction, for the all-pairs code matrix.

Allwein et al. do not consider loss functions of the form L 
 y ��� �
ay, and uses non-linear

loss functions such as L 
 y � � e � y. In this case, the class predicted by loss-based decoding
may differ from the one predicted by the method by Hastie and Tibshirani.

This theorem applies only to the all-pairs code matrix. For other matrices such that
�B � c � � �B � c � is a linear function of �B � c � (such as the one-against-all matrix), we can prove
that loss-based decoding (with L 
 y � � �

ay) predicts the same class as the non-iterative es-
timates. However, in this case, the non-iterative estimates do not necessarily predict the
same class as the iterative ones.

5 Experiments

We performed experiments using the following multiclass datasets from the UCI Machine
Learning Repository [Blake and Merz, 1998]: satimage, pendigits and soybean. Table
1 summarizes the characteristics of each dataset.

The binary learning algorithm used in the experiments is boosted naive Bayes
[Elkan, 1997], since this is a method that cannot be easily extended to handle multiclass
problems directly. For all the experiments, we ran 10 rounds of boosting.



Method Code Matrix Error Rate MSE
Loss-based (L � y � � � y) All-pairs 0.1385 -
Loss-based (L � y � � e

� y) All-pairs 0.1385 -
Hastie-Tibshirani (non-iterative) All-pairs 0.1385 0.0999
Hastie-Tibshirani (iterative) All-pairs 0.1385 0.0395
Loss-based (L � y � � � y) One-against-all 0.1445 -
Loss-based (L � y � � e

� y) One-against-all 0.1425 -
Extended Hastie-Tibshirani (non-iterative) One-against-all 0.1445 0.1212
Extended Hastie-Tibshirani (iterative) One-against-all 0.1670 0.0396
Loss-based (L � y � � � y) Sparse 0.1435 -
Loss-based (L � y � � e

� y) Sparse 0.1425 -
Extended Hastie-Tibshirani (non-iterative) Sparse 0.1480 0.1085
Extended Hastie-Tibshirani (iterative) Sparse 0.1330 0.0340
Multiclass Naive Bayes - 0.2040 0.0651

Table 2: Test set results on the satimage dataset.

We use three different code matrices for each dataset: all-pairs, one-against-all and a sparse
random matrix. The sparse random matrices have � 15 log2 k � columns, and each element
is 0 with probability 1/2 and -1 or +1 with probability 1/4 each. This is the same type of
sparse random matrix used by Allwein et al.[Allwein et al., 2000]. In order to have good
error correcting properties, the Hamming distance ρ between each pair of rows in the matrix
must be large. We select the matrix by generating 10,000 random matrices and selecting
the one for which ρ is maximized, checking that each column has at least one � 1 and one
� 1, and that the matrix does not have two identical columns.

We evaluate the performance of each method using two metrics. The first metric is the
error rate obtained when we assign each example to the most likely class predicted by
the method. This metric is sufficient if we are only interested in classifying the examples
correctly and do not need accurate probability estimates of class membership.

The second metric is squared error, defined for one example x as SE 
 x � � ∑ j 
 t j 
 x � �
p j 
 x � � 2, where p j 
 x � is the probability estimated by the method for example x and class
j, and t j 
 x � is the true probability of class j for x. Since for most real-world datasets true
labels are known, but not probabilities, t j 
 x � is defined to be 1 if the label of x is j and
0 otherwise. We calculate the squared error for each x to obtain the mean squared er-
ror (MSE). The mean squared error is an adequate metrics for assessing the accuracy of
probability estimates [Zadrozny and Elkan, 2001b]. This metric cannot be applied to the
loss-based decoding method, since it does not produce probability estimates.

Table 2 shows the results of the experiments on the satimage dataset for each type of code
matrix. As a baseline for comparison, we also show the results of applying multiclass Naive
Bayes to this dataset. We can see that the iterative Hastie-Tibshirani procedure (and its
extension to arbitrary code matrices) succeeds in lowering the MSE significantly compared
to the non-iterative estimates, which indicates that it produces probability estimates that
are more accurate. In terms of error rate, the differences between methods are small. For
one-against-all matrices, the iterative method performs consistently worse, while for sparse
random matrices, it performs consistently better. Figure 1 shows how the MSE is lowered
at each iteration of the Hastie-Tibshirani algorithm, for the three types of code matrices.

Table 3 shows the results of the same experiments on the datasets pendigits and soybean.
Again, the MSE is significantly lowered by the iterative procedure, in all cases. For the
soybean dataset, using the sparse random matrix, the iterative method again has a lower
error rate than the other methods, which is even lower than the error rate using the all-pairs
matrix. This is an interesting result, since in this case the all-pairs matrix has 171 columns
(corresponding to 171 classifiers), while the sparse matrix has only 64 columns.
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Figure 1: Convergence of the MSE for the satimage dataset.

pendigits soybean
Method Code Matrix Error Rate MSE Error Rate MSE
Loss-based (L � y � � � y) All-pairs 0.0723 - 0.0665 -
Loss-based (L � y � � e

� y) All-pairs 0.0715 - 0.0665 -
Hastie-Tibshirani (non-iterative) All-pairs 0.0723 0.0747 0.0665 0.0454
Hastie-Tibshirani (iterative) All-pairs 0.0718 0.0129 0.0665 0.0066
Loss-based (L � y � � � y) One-against-all 0.0963 - 0.0824 -
Loss-based (L � y � � e

� y) One-against-all 0.0963 - 0.0931 -
Ext. Hastie-Tibshirani (non-it.) One-against-all 0.0963 0.0862 0.0824 0.0493
Ext. Hastie-Tibshirani (it.) One-against-all 0.1023 0.0160 0.0931 0.0073
Loss-based (L � y � � � y) Sparse 0.1284 - 0.0718 -
Loss-based (L � y � � e

� y) Sparse 0.1266 - 0.0718 -
Ext. Hastie-Tibshirani (non-it.) Sparse 0.1484 0.0789 0.0798 0.0463
Ext. Hastie-Tibshirani (it.) Sparse 0.1261 0.0216 0.0636 0.0062
Multiclass Naive Bayes - 0.2779 0.0509 0.0745 0.0996

Table 3: Test set results on the pendigits and soybean datasets.

6 Conclusions

We have presented a method for producing class membership probability estimates for
multiclass problems, given probability estimates for a series of binary problems determined
by an arbitrary code matrix.

Since research in designing optimal code matrices is still on-going
[Utschick and Weichselberger, 2001] [Crammer and Singer, 2000], it is important to
be able to obtain class membership probability estimates from arbitrary code matrices.
In current research, the effectiveness of a code matrix is determined primarily by the
classification accuracy. However, since many applications require accurate class mem-
bership probability estimates for each of the classes, it is important to also compare the
different types of code matrices according to their ability of producing such estimates. Our
extension of Hastie and Tibshirani’s method is useful for this purpose.

Our method relies on the probability estimates given by the binary classifiers to produce the
multiclass probability estimates. However, the probability estimates produced by Boosted



Naive Bayes are not calibrated probability estimates. An interesting direction for future
work is in determining whether the calibration of the probability estimates given by the
binary classifiers improves the calibration of the multiclass probabilities.
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