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Abstract

We present a new approach to bounding the true error rate of a continuous
valued classifier based upon PAC-Bayes bounds. The method first con-
structs a distribution over classifiers by determining how sensitive each
parameter in the model is to noise. The true error rate of the stochastic
classifier found with the sensitivity analysis can then be tightly bounded
using a PAC-Bayes bound. In this paper we demonstrate the method on
artificial neural networks with results of a

�����
order of magnitude im-

provement vs. the best deterministic neural net bounds.

1 Introduction

In machine learning it is important to know the true error rate a classifier will achieve on
future test cases. Estimating this error rate can be suprisingly difficult. For example, all
known bounds on the true error rate of artificial neural networks tend to be extremely loose
and often result in the meaningless bound of “always err” (error rate = 1.0).

In this paper, we do not bound the true error rate of a neural network. Instead, we bound
the true error rate of a distribution over neural networks which we create by analysing one
neural network. (Hence, the title.) This approach proves to be much more fruitful than
trying to bound the true error rate of an individual network. The best current approaches
[1][2] often require �����	� , �����	�	� , or more examples before producing a nontrivial bound on
the true error rate. We produce nontrivial bounds on the true error rate of a stochastic neural
network with less than �
�	� examples. A stochastic neural network is a neural network
where each weight �
� is perturbed by a gaussian with variance ���� every time it is evaluated.

Our approach uses the PAC-Bayes bound [5]. The approach can be thought of as a
redivision of the work between the experimenter and the theoretician: we make the experi-
menter work harder so that the theoretician’s true error bound becomes much tighter. This
“extra work” on the part of the experimenter is significant, but tractable, and the resulting
bounds are much tighter.

An alternative viewpoint is that the classification problem is finding a hypothesis with
a low upper bound on the future error rate. We present a post-processing phase for neural
networks which results in a classifier with a much lower upper bound on the future error
rate. The post-processing can be used with any artificial neural net trained with any opti-
mization method; it does not require the learning procedure be modified, re-run, or even
that the threshold function be differentiable. In fact, this post-processing step can easily be
adapted to other learning algorithms.

David MacKay [4] has done significant work to make approximate Bayesian learning
tractable with a neural network. Our work here is complimentary rather than competitive.
We exhibit a technique which will likely give nontrivial true error rate bounds for Bayesian



neural networks regardless of approximation or prior modeling errors. Verification of this
statement is work in progress.

The post-processing step finds a “large” distribution over classifiers, which has a small
average empirical error rate. Given the average empirical error rate, it is straightforward
to apply the PAC-Bayes bound in order to find a bound on the average true error rate. We
find this large distribution over classifiers by performing a simple noise sensitivy analysis
on the learned model. The noise model allows us to generate a distribution of classifiers
with a known, small, average empirical error rate. In this paper we refer to the distribution
of neural nets that results from this noise analysis as a stochastic neural net model.

Why do we expect the PAC-Bayes bound to be a significant improvement over standard
covering number and VC bound approaches? There exist learning problems for which
the difference between the lower bound and the PAC-Bayes upper bound are tight up to����� ����	� where 
 is the number of training examples. This is superior to the guarantees
which can be made for typical covering number bounds where the gap is, at best, known
up to an (asymptotic) constant. The guarantee that PAC-Bayes bounds are sometimes quite
tight encourages us to apply them here.

The next sections will:

1. Describe the bounds we will compare.

2. Describe our algorithm for constructing a distribution over neural networks.

3. Present experimental results.

2 Theoretical setup
We will work in the standard supervised batch learning setting. This setting starts with the
assumption that all examples are drawn from some fixed (unknown) distribution, � , over
(input, output) pairs, ��
������ . The output � is drawn from the space � � ��� ��� and the input
space is arbitrary. The goal of machine learning is to use a sample set � of 
 pairs to find
a classifier, � , which maps the input space to the output space and has a small true error,� �������! #"%$&������
��(') ��� . Since the distribution � is unknown, the true error rate is not
observable. However, we can observe the empirical error rate, *� �+�,�-�. #"�/�������
��0') ��� )1�32 ��54 1 ����
 � �6') � � .

Now that the basic quantities of interest are defined, we will first present a modern neu-
ral network bound, then specialize the PAC-Bayes bound to a stochastic neural network. A
stochastic neural network is simply a neural network where each weight in the neural net-
work is drawn from some distribution whenever it is used. We will describe our technique
for constructing the distribution of the stochastic neural network.

2.1 Neural Network bound
We will compare a specialization of the best current neural network true error rate bound
[2] with our approach. The neural network bound is described in terms of the following
parameters:

1. A margin, ��798:7 � .
2. An arbitrary function (unrelated to the neural network sigmoid function) ; de-

fined by ;<�=
�� ) � if 
:7 � , ;<�=
�� ) � if 
?> � , and linear in between.

3. @ � , an upper bound on the sum of the magnitude of the weights in the A th layer of
the neural network

4. B � , a Lipschitz constant which holds for the A th layer of the neural network. A
Lipschitz constant is a bound on the magnitude of the derivative.

5. C , the size of the input space.
With these parameters defined, we get the following bound.

Theorem 2.1 (2 layer feed-forward Neural Network true error bound) D"$ EGF �(HJI	K � �����L>9M5NPOQSR �T8U�WVYX[Z



where R ��8 � ) 1�[2 ����� ��� ; 	 ��
������Q�
�� ��� ���Q � ��� ��� 1� B 1 B � @ 1 @ � ��� �� � � � � � �� �
Proof: Given in [2]. �

The theorem is actually only given up to a universal constant. “
���

” might be the right
choice, but this is just an educated guess. The neural network true error bound above is
(perhaps) the tightest known bound for general feed-forward neural networks and so it is
the natural bound to compare with.

This 2 layer feed-forward bound is not easily applied in a tight manner because we can’t
calculate a priori what our weight bound @ � should be. This can be patched up using the
principle of structural risk minimization. In particular, we can state the bound for @ 1 )! #"
where $ is some non-negative integer and  > � is a constant. If the $ th bound holds with
probability %� �'&" � , then all bounds will hold simultaneously with probability � � Z , since()

" 4 1 �$ � )+* �,
Applying this approach to the values of both @ 1 and @ � , we get the following theorem:

Theorem 2.2 (2 layer feed-forward Neural Network true error bound)

 #"$ E F � HJI	K � �����L>3M N�OQ ".- R �T8 �/$���0�� V X9Z
where R ��8<�1$ ��0�� ) 1� 2 ; 	 ��
������Q 
�� � � ���Q � � � ��� 1� B 1 B �  "�23- �54 �� � �76�8�9 ��:;�</= � � �� �

Proof: Apply the union bound to all possible values of $ and 0 as discussed above. �
In practice, we will use  ) 2 ) ��> � and report the value of the tightest applicable bound
for all $��.0 .

2.2 Stochastic Neural Network bound

Our approach will start with a simple refinement [3] of the original PAC-Bayes bound [5].
We will first specialize this bound to stochastic neural networks and then show that the use
of this bound in conjunction with a post-processing algorithm results in a much tighter true
error rate upper bound.

First, we will need to define some parameters of the theorem.

1. ? is a distribution over the hypotheses which can be found in an example depen-
dent manner.

2. @ is a distribution over the hypotheses which is chosen a priori—without depen-
dence on the examples.

3. �BA ����� )+CD
�E AD� ����� is the true error rate of the stochastic hypothesis which, in
any evaluation, draws a hypothesis � from ? , and outputs ����
�� .

4. *�BA ����� )FCG
HE A *� �+�,� is the average empirical error rate of the same stochastic
hypothesis.

Now, we are ready to state the theorem.

Theorem 2.3 (PAC-Bayes Relative Entropy Bound) For all priors, @ ,

 #"$ E F ? K KL � *��A �+�,�JI�I �HA �������LK KL �M?NIOI @ � �QP N � �&
 � � V X Z
where KL �/?NIOI @ � )SR 
UT ����� P NWV �O
��X �Y
J� C � is the Kullback-Leibler divergence between the dis-
tributions ? and @ and KL � *�ZA ������IOI ��A ������� is the KL divergence between a coin of bias*�HA ����� and a coin of bias �[A ����� .



Proof: Given in [3]. �
We need to specialize this theorem for application to a stochastic neural network with a
choice of the “prior”. Our “prior” will be zero on all neural net structures other than the
one we train and a multidimensional isotropic gaussian on the values of the weights in our
neural network. The multidimensional gaussian will have a mean of � and a variance in
each dimension of R � . This choice is made for convenience and happens to work.

The optimal value of R is unknown and dependent on the learning problem so we will
wish to parameterize it in an example dependent manner. We can do this using the same
trick as for the original neural net bound. Use a sequence of bounds where R )��� " for �
and  some constants and $ a nonnegative number. For the $ th bound set Z�� % &� � " � . Now,
the union bound will imply that all bounds hold simultaneously with probability at least
� � Z .

Now, assuming that our “posterior” ? is also defined by a multidimensional gaussian
with the mean and variance in each dimension defined by � � and � �� , we can specialize to
the following corollary:

Corollary 2.4 (Stochastic Neural Network bound) Let 0 be the number of weights in a
neural net, � � be the A th weight and � � be the variance of the A th weight. Then, we have

 #"$
�� F ? K KL � *��A �+�,�JI�I �HA ������� K9M5NPO" 2 -� 4 1�� P N	��
 9��
 � � �
 ��� �


� � � 
 � 9 � 1
��� � P N � � " � �� &
 � �

�� X Z (1)

Proof: Analytic calculation of the KL divergence between two multidimensional Gaus-
sians and the union bound applied for each value of $ . �
We will choose  ) ��> � and �-) � > � as reasonable default values.

One more step is necessary in order to apply this bound. The essential difficulty is
evaluting *� A ����� . This quantity is observable although calculating it to high precision is
difficult. We will avoid the need for a direct evaluation by a monte carlo evaluation and
a bound on the tail of the monte carlo evaluation. Let *���A �+�,� �  #" �A � / ������
�� ') ��� be the
observed rate of failure of a � random hypotheses drawn according to ? and applied to a
random training example. Then, the following simple bound holds:

Theorem 2.5 (Sample Convergence Bound) For all distributions, ? , for all sample sets � ,

 #"A E
KL � *���A ������IOI�*�HA �+�,� � K P N � &� V�X[Z

where � is the number of evaluations of the stochastic hypothesis.

Proof: This is simply an application of the Chernoff bound for the tail of a Binomial
where a “head” occurs when an error is observed and the bias is *� A �+�,� . �
In order to calculate a bound on the expected true error rate, we will first bound the expected
empirical error rate *�ZA �+�,� with confidence &� then bound the expected true error rate � A �����
with confidence &

� , using our bound on *� A �+�,� . Since the total probability of failure is only&
� � &

�
) Z our bound will hold with probability � � Z . In practice, we will use � ) �����	�

evaluations of the empirical error rate of the stochastic neural network.

2.3 Distribution Construction algorithm
One critical step is missing in the description: How do we calculate the multidimensional
gaussian, ? ? The variance of the posterior gaussian needs to be dependent on each weight
in order to achieve a tight bound since we want any “meaningless” weights to not contribute
significantly to the overall sample complexity. We use a simple greedy algorithm to find
the appropriate variance in each dimension.

1. Train a neural net on the examples

2. For every weight, ��� , search for the variance, � �� , which reduces the empirical
accuracy of the stochastic neural network by some fixed target percentage (we use
� ����� ) while holding all other weights fixed.
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Figure 1: Plot of measured errors and error bounds for the neural network (NN) and the
stochastic neural network (SNN) on the synthetic problem. The training set has 100 cases
and the reduction in empirical error is 5%. Note that a true error bound of “100” (visible
in the graph on the left) implies that at least ������� more examples are required in order to
make a nonvacuous bound. The graph on the right expands the vertical scale by excluding
the poor true error bound that has error above 100. The curves for NN and SNN are quali-
tatively similar on the train and test sets. As expected, the SNN consistently performs 5%
worse than the NN on the train set (easier to see in the graph on the right). Surprisingly,
the SNN performs worse than the NN by less than 5% on the test sets. Both NN and SNN
exhibit overfitting after about 6000-12000 pattern presentations (600-1200 epochs). The
shape of the SNN bound roughly mimics the shape of the empirically measured true error
(this is more visible in the graph on the right) and thus might be useful for indicating where
the net begins overfitting.

3. The stochastic neural network defined by ���	��

� ���� will generally have a too-large
empirical error. Therefore, we calculate a global multiplier ����� such that the
stochastic neural network defined by ��� � 

������ � decreases the empirical accuracy
by only the same ������� (absolute error rate) used in Step 2.

4. Then, we evaluate the empirical error rate of the resulting stochastic neural net
by repeatedly drawing samples from the stochastic neural network. In the work
reported here we use ��������������� samples.

3 Experimental Results

How well can we bound the true error rate of a stochastic neural network? The answer is
much better than we can bound the true error rate of a neural network.

We use two datasets to empirically evaluate the quality of the new bound. The first is a
synthetic dataset which has 25 input dimensions and one output dimension. Most of these
dimensions are useless—simply random numbers drawn from a � �!�"
#��$ Gaussian. One of
the 25 input dimensions is dependent on the label. First, the label % is drawn uniformly
from ���&��
#� � , then the special dimension is drawn from a � �!%'
#��$ Gaussian. Note that this
learning problem can not be solved perfectly because some examples will be drawn from
the tails where the gaussians overlap. The “ideal” neural net to use in solving this synthetic
problem is a single node perceptron. We will instead use a 2 layer neural net with 2 hidden
nodes using the sigmoid transfer function. This overly complex neural net will result in the
potential for significant overfitting which makes the bound prediction problem interesting.
It is also somewhat more “realistic” if the neural net structure does not exactly match the
learning problem.

The second dataset is the ADULT problem from the UCI Machine Learning Repos-
itory. We use a 2 layer neural net with 2 hidden units for this problem as well because
preliminary experiments showed that nets this small can overfit the ADULT dataset if the
training sample is small.

To keep things challenging, we use just �����(�*)+��� examples in our experiments. As
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Figure 2: Plot of measured errors and error bounds for the neural network (NN) and the
stochastic neural network (SNN) on the UCI ADULT dataset. These graphs show the
results obtained using a 1% reduction in empirical error instead of the 5% reduction used
in Figure 1. The training sample size for this problem is 200 cases. NN and SNN exhibit
overfitting after approximately 12000 pattern presentations (600 epochs). As in Figure 1, a
true error bound of “100” implies that at least ����� � more examples are required in order to
make a nonvacuous bound. The graph on the right expands the vertical scale by excluding
the poor true error bound.

we will see in Figures 1 and 2, constructing a nonvacuous bound for a continuous hypoth-
esis space with only �����	� )���� examples is quite difficult. The conventional bounds are
hopelessly loose.

Figure 1 shows the results for the synthetic problem. For this problem we use 100
training cases and a 5% reduction in empirical error. The results for the ADULT problem
are presented in Figure 2. For this problem we use 200 training cases and a 1% reduction
in empirical error. Experiments performed on these problems using somewhat smaller and
larger training samples yielded similar results. The choice of reduction in empirical error
is somewhat arbitrary. We see qualitatively similar results if we switch to a 1% reduction
for the synthetic problem and a 5% reduction for the ADULT problem.

There are several things worth noting about the results in the two figures.

1. The SNN upper bounds are 2-3 orders of magnitude lower than the NN upper
bounds. While not as tight as might be desired, the SNN upper bounds are orders
of magnitude better and are not vacuous.

2. The SNNs perform somewhat better than expected. In particular, on the synthetic
problem the SNN true error rate is at most

� � worse than the true error rate of
the NN (true error rates are estimated using large test sets). This is suprising
considering that we fixed the difference in empirical error rates at ��� for the
synthetic problem. Similarly, on the ADULT problem we observe that the true
error rates between the SNN and NN typically is only about 0.5%, about half of
the target difference of 1%. This is good because it suggests that we do not lose
as much accuracy as might be expected when creating the SNN.

3. On both test problems, the shape of the SNN bound is somewhat similar to the
shape of the true error rate. In particular, the local minima in the SNN bound
occur roughly where the local minima in the true error rates occur. The SNN
bound may weakly predict the overfitting points of the SNN and NN nets.

The comparison between the neural network bound and the stochastic neural network
bound is not quite “fair” due to the form of the bound. In particular, the stochastic neural
network bound can never return a value greater than “always err”. This implies that when
the bound is near the value of “ � ”, it is difficult to judge how rapidly extra examples will
improve the stochastic neural network bound. We can judge the sample complexity of
the stochastic bound by plotting the value of the numerator in equation 1. Figure 3 plots
the complexity versus the number of pattern presentations in training. In this figure, we
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Figure 3: We plot the “complexity” of the stochastic network model (numerator of equation
1) vs. training epoch. Note that the complexity increases with more training as expected
and stays below �
�	� , implying nonvacuous bounds on a training set of size ����� .

observe the expected result: the “complexity” (numerator of equation 1) increases with
more training and is significantly less than the number of examples (100).

The stochastic bound is a radical improvement on the neural network bound but it is not
yet a perfectly tight bound. Given that we do not have a perfectly tight bound, one impor-
tant consideration arises: does the minimum of the stochastic bound predict the minimum
of the true error rate (as predicted by a large holdout dataset). In particular, can we use
the stochastic bound to determine when we should cease training? The stochastic bound
depends upon (1) the complexity which increases with training time and (2) the training er-
ror which decreases with training time. This dependence results in a minima which occurs
at approximately 12000 pattern presentations for both of our test problems. The point of
minimal true error (for the stochastic and deterministic neural networks) occurs at approx-
imately 6000 pattern presentations for the synthetic problem, and at about 18000 pattern
presentations for the ADULT problem, indicating that the stochastic bound weakly predicts
the point of minimum error. The neural network bound has no such minimum.

Is the choice of 1-5% increased empirical error optimal? In general, the “optimal”
choice of the extra error rate depends upon the learning problem. Since the stochastic
neural network bound (corollary 2.4) holds for all multidimensional gaussian distributions,
we are free to optimize the choice of distribution in anyway we desire. Figure 4 shows the
resulting bound for different choices of posterior ? . The bound has a minimum at ��> � �
extra error indicating that our initial choices of � > � � and ��> � � are in the right ballpark, and
��> � � may be unnecessarily large. Larger differences in empirical error rate such as ��> � � are
easier to obtain reliably with fewer samples from the stochastic neural net, but we have not
had difficulty using as few as 100 samples from the SNN with as small as a 1% increase in
empirical error. Also note that the complexity always decreases with increasing entropy in
the distribution of our stochastic neural net. The existence of a minimum in Figure 4 is the
“right” behaviour: the increased empirical error rate is significant in the calculation of the
true error bound.

4 Conclusion

We have applied a PAC-Bayes bound for the true error rate of a stochastic neural network.
The stochastic neural network bound results in a radically tighter (

� � �
orders of mag-
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Figure 4: Plot of the stochastic neural net (SNN) bound for “posterior” distributions chosen
according to the extra empirical error they introduce.

nitude) bound on the true error rate of a classifier while increasing the empirical and true
error rates only a small amount.

Although, the stochastic neural net bound is not completely tight, it is not vacuous with
just ����� � � �	� examples and the minima of the bound weakly predicts the point where
overtraining occurs.

The results with two datasets (one synthetic and one from UCI) are extremely
promising—the bounds are orders of magnitude better. Our next step will be to test the
method on more datasets using a greater variety of net architectures to insure that the
bounds remain tight. In addition, there remain many opportunities for improving the ap-
plication of the bound. For example, it is possible that shifting the weights when finding a
maximum acceptable variance will result in a tighter bound. Also, we have not taken into
account symmetries within the network which would allow for a tighter bound calculation.
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