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Abstract

In previous work on “transformed mixtures of Gaussians” and
“transformed hidden Markov models”, we showed how the EM al-
gorithm in a discrete latent variable model can be used to jointly
normalize data (e.g., center images, pitch-normalize spectrograms)
and learn a mixture model of the normalized data. The only input
to the algorithm is the data, a list of possible transformations, and
the number of clusters to find. The main criticism of this work
was that the exhaustive computation of the posterior probabili-
ties over transformations would make scaling up to large feature
vectors and large sets of transformations intractable. Here, we de-
scribe how a tremendous speed-up is acheived through the use of
a variational technique for decoupling transformations, and a fast
Fourier transform method for computing posterior probabilities.
For N×N images, learning C clusters under N rotations, N scales,
N x-translations and N y-translations takes only (C + 2 logN)N2

scalar operations per iteration. In contrast, the original algorithm
takes CN6 operations to account for these transformations. We
give results on learning a 4-component mixture model from a video
sequence with frames of size 320×240. The model accounts for 360
rotations and 76,800 translations. Each iteration of EM takes only
10 seconds per frame in MATLAB, which is over 5 million times
faster than the original algorithm.

1 Introduction

The task of clustering raw data such as video frames and speech spectrograms is
often obfuscated by the presence of random, but well-understood transformations
in the data. Examples of these transformations include object motion and camera
motion in video sequences and pitch modulation in spectrograms.

The machine learning community has proposed a variety of sophisticated techniques
for pattern analysis and pattern classification, but these techniques have mostly as-
sumed the data is already normalized (e.g., the patterns are centered in the images)
or nearly normalized. Linear approximations to the transformation manifold have



been used to significantly improve the performance of feedforward discriminative
classifiers such as nearest neighbors and multilayer perceptrons (Simard, LeCun
and Denker 1993). Linear generative models (factor analyzers, mixtures of factor
analyzers) have also been modified using linear approximations to the transforma-
tion manifold to build in some degree of transformation invariance (Hinton, Dayan
and Revow 1997). A multi-resolution approach can be used to extend the useful-
ness of linear approximations (Vasconcelos and Lippman 1998), but this approach is
susceptable to local minima – e.g. a pie may be confused for a face at low resolution.

For significant levels of transformation, linear approximations are far from exact
and better results can be obtained by explicitly considering transformed versions of
the input. This approach has been used to design “convolutional neural networks”
that are invariant to translations of parts of the input (LeCun et al. 1998).

In previous work on “transformed mixtures of Gaussians” (Frey and Jojic 2001)
and “transformed hidden Markov models” (Jojic et al. 2000), we showed how the
EM algorithm in a discrete latent variable model can be used to jointly normalize
data (e.g., center video frames, pitch-normalize spectrograms) and learn a mixture
model of the normalized data. We found “that the algorithm is reasonably fast (it
learns in minutes or hours) and very effective at transformation-invariant density
modeling.” Those results were for 44 × 28 images, but realistic applications such
as home video summarization require near-real-time processing of medium-quality
video at resolutions near 320 × 240. In this paper, we show how a variational
technique and a fast Fourier method for computing posterior probabilities can be
used to achieve this goal.

2 Background

In (Frey and Jojic 2001), we introduced a single discrete variable that enumerates
a discrete set of possible transformations that can occur in the input. Here, we
break the transformation into a sequence of transformations. Tk is the random
variable for the transformation matrix at step k. So, if Tk is the set of possible
transformation matrices corresponding to the type of transformation at step k (e.g.,
image rotation), Tk ∈ Tk.

The generative model is shown in Fig. 1a and consists of picking a class c, drawing a
vector of image pixel intensities z0 from a Gaussian, picking the first transformation
matrix T1 from Tk, applying this transformation to z0 and adding Gaussian noise
to obtain z1, and repeating this process until the last transformation matrix TK is
drawn from TK and is applied to zK−1 to obtain the observed data zK . The joint
distribution is

p(c, z0,T1, z1, . . . ,TK , zK) = p(c)p(z0|c)
K
∏

k=1

p(Tk)p(zk|zk−1,Tk). (1)

The probability of class c ∈ {1, . . . , C} is parameterized by p(c) = πc and the
untransformed latent image has conditional density

p(z0|c) = N (z0; µc,Φc), (2)

where N () is the normal distribution, µc is the mean image for class c and Φc is the
diagonal noise covariance matrix for class c. Notice that the noise modeled by Φc

gets transformed, so Φc can model noise sources that depend on the transformations,
such as background clutter and object deformations in images.
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Figure 1: (a) The Bayesian network for a generative model that draws an image z0

from class c, applies a randomly drawn transformation matrix T1 of type 1 (e.g.,
image rotation) to obtain z1, and so on, until a randomly drawn transformation
matrix TK of type K (e.g., image translation) is applied to obtain the observed
image zK . (b) The Bayesian network for a factorized variational approximation to
the posterior distribution, given zK . (c) When an image is measured on a discrete,
radial 2-D grid, a scale and rotation correspond to a shift in the radial and angular
coordinates.

The probability of transformation matrix Tk at step k is p(Tk) = λk,Tk
. (In our

experiments, we often fix this to be uniform.) At each step, we assume a small
amount of noise with diagonal covariance matrix Ψ is added to the image, so

p(zk|zK−1,Tk) = N (zk;Tkzk−1,Ψ). (3)

Tk operates on zk−1 to produce a transformed image. In fact, Tk can be viewed
as a permutation matrix that rearranges the pixels in zk−1. Usually, we assume
Ψ = ψI and in our experiments we often set ψ to a constant, small value, such as
0.01.

In (2001), an exact EM algorithm for learning this model is described. The suf-
ficient statistics for πc, µc and Φc are computed by averaging the derivatives of
ln(πcN (z0; µc,Φc)) over the posterior distribution,

p(c, z0|zK) =
∑

T1

· · ·
∑

TK

p(z0|c,T1, . . . ,TK , zK)p(c,T1, . . . ,TK |zK). (4)

Since z0, . . . , zK are jointly Gaussian given c and T1, . . . ,TK ,
p(z0|c,T1, . . . ,TK , zK) is Gaussian and its mean and covariance are com-
puted using linear algebra. Also, p(c,T1, . . . ,TK |zK) is computed using linear
algebra.

The problem with this direct approach is that the number of scalar operations in (4)
is very large for large feature vectors and large sets of transformations. For N ×N
images, learning C clusters under N rotations, N scales, N x-translations and N
y-translations leads to N4 terms in the summation. Since there are N2 pixels, each
term is computed using N2 scalar operations. So, each iteration of EM takes CN6

scalar operations per training case. For 10 classes and images of size 256× 256, the
direct approach takes 2.8 × 1015 scalar operations per image for each iteration of
EM.

We now describe how a variational technique for decoupling transformations, and
a fast Fourier transform method for computing posterior probabilities can reduce
the above number to (C + 2 logN)N2 scalar operations. For 10 classes and images
of size 256× 256, the new method takes 2, 752, 512 scalar operations per image for
each iteration of EM.



3 Factorized variational technique

To simplify the computation of the required posterior in (4), we use a variational
approximation (Jordan et al. 1998). As shown in Fig. 1b, our variational approxi-
mation is a completely factorized approximation to the true posterior:

p(c, z0,T1, z1, . . . ,TK |zK) ≈ q(c, z0,T1, z1, . . . ,TK)

= q(c)q(z0)
(

K−1
∏

k=1

q(Tk)q(zk)
)

q(TK). (5)

The q-distributions are parameterized and these variational parameters are varied
to make the approximation a good one. p(c, z0|zK) ≈ q(c)q(zK), so the sufficient
statistics can be readily determined from q(c) and q(zK). The variational parame-
ters are q(c) = ρc, q(Tk) = γk,Tk

, q(zk) = N (zk; ηk,Ωk).

The generalized EM algorithm (Neal and Hinton 1998) maximizes a lower bound
on the log-likelihood of the observed image zK :

B =
∑

∫

q(c, z0,T1, z1, . . . ,TK) ln
p(c, z0,T1, z1, . . . ,TK , zK)

q(c, z0,T1, z1, . . . ,TK)
≤ ln p(zK). (6)

In the E step, the variational parameters are adjusted to maximize B and in the M
step, the model parameters are adjusted to maximize B.

Assuming constant noise, Ψ = ψI, the derivatives of B with respect to the varia-
tional parameters produce the following E-step updates:

Ω0 ←
(

∑

c

ρcΦ
−1
c + ψ−1I

)

−1

η0 ← Ω0

(

∑

c

ρcΦ
−1
c µc + ψ−1

∑

T1

γ1,T1
T−1

1 η1

)

(7)

ρc ← πc exp
(

−
1

2
tr(Ω0Φ

−1
c )−

1

2
(η0 − µc)

′Φ−1
c (η0 − µc)

)

Ωk ←
1

2
ψI

ηk ←
1

2

(

∑

Tk

γk,Tk
Tkηk−1 +

∑

Tk+1

γk+1,Tk+1
T−1

k+1
ηk+1

)

(8)

γk,Tk
← λk,Tk

exp
(

−
1

2
tr(Ωkψ

−1)−
1

2
ψ−1(ηk −Tkηk−1)

′(ηk −Tkηk−1)
)

. (9)

Each time the ρc’s are updated, they should be normalized and similarly for the
γk,Tk

’s. One or more iterations of the above updates are applied for each training
case and the variational parameters are stored for use in the M-step, and as the
initial conditions for the next E-step.

The derivatives of B with respect to the model parameters produce the following
M-step updates:

πc ← 〈ρc〉

µc ← 〈ρcη0〉

Φc ← 〈ρc(Ω0 + diag((η0 − µc)(η0 − µc)
′)〉, (10)

where 〈〉 indicates an average over the training set.

This factorized variational inference technique is quite greedy, since at each step,
the method approximates the posterior with one Gaussian. So, the method works
best for a small number of steps (2 in our experiments).



4 Inference using fast Fourier transforms

The M-step updates described above take very few computations, but the E-step
updates can be computationally burdensome. The dominant culprits are the com-
putation of the distance of the form

dT = (g −Th)′(g −Th) (11)

in (9), for all possible transformations T, and the computation of the form
∑

T

γTTh (12)

in (7) and (8).

Since the variational approximation is more accurate when the transformations are
broken into fewer steps, it is a good idea to pack as many transformations into
each step as possible. In our experiments, x-y translations are applied in one step,
and rotations are applied in another step. However, the number of possible x-y
translations in a 320× 240 image is 76,800. So, 76,800 dT’s must be computed and
the computation of each dT uses a vector norm of size 76,800.

It turns out that if the data is defined on a coordinate system where the effect of a
transformation is a shift, the above quantities can be computed very quickly using
fast Fourier transforms (FFTs). For images measured on rectangular grids, an x-y
translation corresponds to a shift in the coordinate system. For images measured
on a radial grid, such as the one shown in Fig. 1c, a scale and rotation corresponds
to a shift in the coordinate system (Wolberg and Zokai 2000).

When updating the variational parameters, it is straightforward to convert them to
the appropriate coordinate system, apply the FFT method and convert them back.

We now use a very different notation to describe the FFT method. The image is
measured on a discrete grid and x is the x-y coordinate of a pixel in the image (x
is a 2-vector). The images g and h in (11) and (12) are written as functions of x:
g(x), h(x). In this representation, T is an integer 2-vector, corresponding to a shift
in x. So, (11) becomes

d(T) =
∑

x

(g(x)− h(x + T))2 =
∑

x

(g(x)2 − 2g(x)h(x + T) + h(x + T)2) (13)

and (12) becomes
∑

T

γ(T)h(x + T). (14)

The common form is the correlation

f(T) =
∑

x

g(x)h(x + T), (15)

For an N × N grid, computing the correlation directly for all T takes N4 scalar
operations. The FFT can be used to compute the correlation in N2 logN time.
The FFTs G(ω) and H(ω) of g and h are computed in N2 logN time. Then, the
FFT F (ω) of f is computed in N2 as follows,

F (ω) = G(ω)∗H(ω), (16)

where “∗” denotes complex conjugate. Then the inverse FFT f(T) of F (ω) is
computed in N2 logN time.

Using this method, the posterior and sufficient statistics for all N2 shifts in an
N ×N grid can be computed in N2 logN time. Using this method along with the
variational technique, C classes, N scales, N rotations, N x-translations and N
y-translations can be accounted for using (C + 2 logN)N2 scalar operations.



5 Results

In order to compare our new learning algorithm with the previously published result,
we repeated the experiment on clustering head poses in 200 44x28 frames. We
achieved essentially the same result, but in only 10 seconds as opposed to 40 minutes
that the original algorithm needed to compete the task. Both algorithms were
implemented in Matlab. It should be noted that the original algorithm tested only
for 9 vertical and 9 horizontal shifts (81 combinations), while the new algorithm
dealt with all 1232 possible discrete shifts. This makes the new algorithm 600
times faster on low resolution data. The speed-up is even more drastic at higher
resolutions, and when rotations and scales are added, since the complexity of the
original algorithm is CN6, where C is the number of classes and N is the number
of pixels.

The speed-up promised in the abstract is based on our computations, but obviously
we were not able to run the original algorithm on full 320x240 resolution data.
To illustrate that the fast variational technique presented here can be efficiently
used to learn data means in the presence of scale change, significant rotations and
translations in the data, we captured 10 seconds of a video at 320x240 resolution and
trained a two-stage transformation-invariant where the first stage modeled rotations
and scales as shifts in the log-polar coordinate system and the second stage modeled
all possible shifts as described above. In Fig. 2 we show the results of training an
ordinary Gaussian model, shift-invariant model and finally the scale, rotation and
shift invariant model on the sequence. We also show three frames from the sequence
stabilized using the variational inference.

6 Conclusions

We describes how a tremendous speed-up in training transformation-invariant gen-
erative model can be achieved through the use of a variational technique for decou-
pling transformations, and a fast Fourier transform method for computing posterior
probabilities. For N ×N images, learning C clusters under N rotations, N scales,
N x-translations and N y-translations takes only (C+2 logN)N2 scalar operations
per iteration. In contrast, the original algorithm takes CN6 operations to account
for these transformations. In this way we were able to reduce the computation to
only seconds per frame for the images of 320x240 resolution using a simple Matlab
implementation.

This opens the door for generative models of pixel intensities in video to be effi-
ciently used for transformation-invariant video summary and search. As opposed to
most techniques used in computer vision today, the generative modeling approach
provides the likelihood model useful for search or retrieval, automatic clustering of
the data and the extensibility through adding new hidden variables.

The model described here could potentially be useful for other high-dimensional
data, such as audio.
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