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Abstract 

Unsupervised learning algorithms have been derived for several sta­
tistical models of English grammar, but their computational com­
plexity makes applying them to large data sets intractable. This 
paper presents a probabilistic model of English grammar that is 
much simpler than conventional models, but which admits an effi­
cient EM training algorithm. The model is based upon grammat­
ical bigrams, i.e. , syntactic relationships between pairs of words. 
We present the results of experiments that quantify the represen­
tational adequacy of the grammatical bigram model, its ability to 
generalize from labelled data, and its ability to induce syntactic 
structure from large amounts of raw text. 

1 Introduction 

One of the most significant challenges in learning grammars from raw text is keep­
ing the computational complexity manageable. For example, the EM algorithm 
for the unsupervised training of Probabilistic Context-Free Grammars- known as 
the Inside-Outside algorithm- has been found in practice to be "computationally 
intractable for realistic problems" [1]. Unsupervised learning algorithms have been 
designed for other grammar models (e.g. , [2 , 3]). However, to the best of our knowl­
edge, no large-scale experiments have been carried out to test the efficacy of these 
algorithms; the most likely reason is that their computational complexity, like that 
of the Inside-Outside algorithm, is impractical. 

One way to improve the complexity of inference and learning in statistical models 
is to introduce independence assumptions; however, doing so increases the model's 
bias. It is natural to wonder how a simpler grammar model (that can be trained 
efficiently from raw text) would compare with conventional models (which make 
fewer independence assumptions, but which must be trained from labelled data) . 
Such a model would be a useful tool in domains where partial accuracy is valuable 
and large amounts of unlabelled data are available (e.g., Information Retrieval, 
Information Extraction, etc.) . 

In this paper, we present a probabilistic model of syntax that is based upon gram­
matical bigrams, i.e., syntactic relationships between pairs of words. We show how 
this model results from introducing independence assumptions into more conven-



the quick brown fox jumps over the lazy dog 

Figure 1: An example parse; arrows are drawn from head words to their depen­
dents. The root word is jumps; brown is a predependent (adjunct) of fox; dog is a 
postdependent (complement) of over. 

tional models; as a result, grammatical bigram models can be trained efficiently 
from raw text using an O(n3 ) EM algorithm. We present the results of experiments 
that quantify the representational adequacy of the grammatical bigram model, its 
ability to generalize from labelled data, and its ability to induce syntactic structure 
from large amounts of raw text. 

2 The Grammatical Bigram Model 

We first provide a brief introduction to the Dependency Grammar formalism used 
by the grammatical bigram model; then, we present the probability model and 
relate it to conventional models; finally, we sketch the EM algorithm for training 
the model. Details regarding the parsing and learning algorithms can be found in 
a companion technical report [4]. 

Dependency Grammar Formalism. 1 The primary unit of syntactic structure 
in dependency grammars is the dependency relationship, or link- a binary relation 
between a pair of words in the sentence. In each link, one word is designated the 
head, and the other is its dependent. (Typically, different types of dependency 
are distinguished, e.g, subject, complement, adjunct, etc.; in our simple model, no 
such distinction is made.) Dependents that precede their head are called pre de­
pendents, and dependents that follow their heads are called postdependents. 

A dependency parse consists of a set of links that, when viewed as a directed 
graph over word tokens , form an ordered tree. This implies three important prop­
erties: 

1. Every word except one (the root) is dependent to exactly one head. 
2. The links are acyclic; no word is , through a sequence of links, dependent to 

itself. 
3. When drawn as a graph above the sentence, no two dependency relations 

cross-a property known as projectivity or planarity. 

The planarity constraint ensures that a head word and its (direct or indirect) de­
pendents form a contiguous subsequence of the sentence; this sequence is the head 
word's constituent. See Figure 1 for an example dependency parse. 

In order to formalize our dependency grammar model, we will view sentences as se­
quences of word tokens drawn from some set of word types. Let V = {tl' t2, ... , t M } 
be our vocabulary of M word types. A sentence with n words is therefore repre­
sented as a sequence S = (Wl, W2 , ... ,wn ), where each word token Wi is a variable 
that ranges over V. For 1 :S i , j :S n , we use the notation (i,j) E L to express that 
Wj is a dependent of Wi in the parse L. 

IThe Dependency Grammar formalism described here (which is the same used in [5 , 6]) 
is impoverished compared to the sophisticated models used in Linguistics; refer to [7] for 
a comprehensive treatment of English syntax in a dependency framework. 



Because it simplifies the structure of our model , we will make the following three 
assumptions about Sand L (without loss of generality): (1) the first word WI of S 
is a special symbol ROOT E V; (2) the root of L is WI; and, (3) WI has only one 
dependent. These assumptions are merely syntactic sugar: they allow us to treat 
all words in the true sentence (i.e., (W2, ... ,Wn )) as dependent to one word. (The 
true root of the sentence is the sole child of WI.) 

Probability Model. A probabilistic dependency grammar is a probability distri­
bution P(S, L) where S = (WI,W2, .. . ,wn ) is a sentence, L is a parse of S, and the 
words W2, ... ,Wn are random variables ranging over V. Of course, S and L exist 
in high dimensional spaces; therefore, tractable representations of this distribution 
make use of independence assumptions. 

Conventional probabilistic dependency grammar models make use of what may 
be called the head word hypothesis: that a head word is the sole (or primary) 
determinant of how its constituent combines with other constituents. The head word 
hypothesis constitutes an independence assumption; it implies that the distribution 
can be safely factored into a product over constituents: 

n 

P(S,L) = II P((Wj: (i,j) E L) is the dependent sequencelwi is the head) 
i=1 

For example, the probability of a particular sequence can be governed by a fixed 
set of probabilistic phrase-structure rules , as in [6]; alternatively, the predependent 
and postdependent subsequences can be modeled separately by Markov chains that 
are specific to the head word, as in [8]. 

Consider a much stronger independence assumption: that all the dependents of a 
head word are independent of one another and their relative order. This is clearly 
an approximation; in general, there will be strong correlations between the de­
pendents of a head word. More importantly, this assumption prevents the model 
from representing important argument structure constraints. (For example: many 
words require dependents , e.g. prepositions; some verbs can have optional objects, 
whereas others require or forbid them.) However, this assumption relieves the parser 
of having to maintain internal state for each constituent it constructs, and therefore 
reduces the computational complexity of parsing and learning. 

We can express this independence assumption in the following way: first , we forego 
modeling the length of the sentence, n, since in parsing applications it is always 
known; then, we expand P(S, Lin) into P(S I L)P(L I n) and choose P(L I n) as 
uniform; finally, we select 

P(S I L) II P( Wj is a [pre/post]dependent I Wi is the head) 
(i ,j)EL 

This distribution factors into a product of terms over syntactically related word 
pairs; therefore, we call this model the "grammatical bigram" model. 

The parameters of the model are 

<­
"(xy P(predependent is ty I head is tx ) 

6. 
"(~ P(postdependent is ty I head is tx ) 

We can make the parameterization explicit by introducing the indicator variable 
wi, whose value is 1 if Wi = tx and a otherwise. Then we can express P(S I L) as 

P(S I L) 
(i,j)EL x=1 y=1 

j<i 
(i,j)EL x=1 y=1 

i<j 



Parsing. Parsing a sentence S consists of computing 

L* 
L:, 

argmaxP(L I S,n) = argmaxP(L, Sin) = argmaxP(S I L) 
L L L 

Yuret has shown that there are exponentially many parses of a sentence with n words 
[9], so exhaustive search for L * is intractable. Fortunately, our grammar model falls 
into the class of "Bilexical Grammars" , for which efficient parsing algorithms have 
been developed. Our parsing algorithm (described in the tech report [4]) is derived 
from Eisner's span-based chart-parsing algorithm [5], and can find L* in O(n3 ) time. 

Learning. Suppose we have a labelled data set 

where Sk = (Wl,k, W2,k,·· · , Wnk,k) and Lk is a parse over Sk. The maximum 
likelihood values for our parameters given the training data are 

where the indicator variable et is equal to 1 if (i,j) E Lk and 0 otherwise. As 
one would expect, the maximum-likelihood value of ,;; (resp. ,~) is simply the 
fraction of tx's predependents (resp. postdependents) that were ty. 

In the unsupervised acquisition problem, our data set has no parses; our approach is 
to treat the Lk as hidden variables and to employ the EM algorithm to learn (locally) 
optimal values of the parameters ,. As we have shown above, the et are sufficient 
statistics for our model; the companion tech report [4] gives an adaptation of the 
Inside-Outside algorithm which computes their conditional expectation in O(n3 ) 

time. This algorithm effectively examines every possible parse of every sentence in 
the training set and calculates the expected number of times each pair of words was 
related syntactically. 

3 Evaluation 

This section presents three experiments that attempt to quantify the representa­
tional adequacy and learnability of grammatical bigram models. 

Corpora. Our experiments make use of two corpora; one is labelled with parses, 
and the other is not. The labelled corpus was generated automatically from the 
phrase-structure trees in the Wall Street Journal portion of the Penn Treebank-III 
[10].2 The resultant corpus, which we call C, consists of 49,207 sentences (1,037,374 
word tokens). This corpus is split into two pieces: 90% of the sentences comprise 
corpus Ctrain (44,286 sentences, 934,659 word tokens), and the remaining 10% com­
prise Ctest (4,921 sentences, 102,715 word tokens). 

The unlabelled corpus consists of the 1987- 1992 Wall Street Journal articles in the 
TREC Text Research Collection Volumes 1 and 2. These articles were segmented 
on sentence boundaries using the technique of [11], and the sentences were post­
processed to have a format similar to corpus C. The resultant corpus consists of 
3,347,516 sentences (66,777,856 word tokens). We will call this corpus U. 

2This involved selecting a head word for each constituent, for which the head-word 
extraction heuristics described in [6] were employed. Additionally, punctuation was 
removed, all words were down-cased, and all numbers were mapped to a special <#> symbol. 



The model's vocabulary is the same for all experiments; it consists of the 10,000 most 
frequent word types in corpus U; this vocabulary covers 94.0% of word instances 
in corpus U and 93.9% of word instances in corpus L. Words encountered during 
testing and training that are outside the vocabulary are mapped to the <unk> type. 

Performance metric. The performance metric we report is the link precision of 
the grammatical bigram model: the fraction of links hypothesized by the model that 
are present in the test corpus Ltest. (In a scenario where the model is not required 
to output a complete parse, e.g., a shallow parsing task, we could similarly define 
a notion of link recall; but in our current setting, these metrics are identical.) Link 
precision is measured without regard for link orientation; this amounts to ignoring 
the model's choice of root, since this choice induces a directionality on all of the 
edges. 

Experiments. We report on the results of three experiments: 

I. Retention. This experiment represents a best-case scenario: the model is 
trained on corpora Ltrain and Ltest and then tested on Ltest. The model's 
link precision in this setting is 80.6%. 

II. Generalization. In this experiment, we measure the model's ability to generalize 
from labelled data. The model is trained on Ltrain and then tested on Ltest. 
The model's link precision in this setting is 61.8%. 

III. Induction. In this experiment, we measure the model 's ability to induce gram­
matical structure from unlabelled data. The model is trained on U and then 
tested on Ltest . The model's link precision in this setting is 39.7%. 

Analysis. The results of Experiment I give some measure of the grammatical 
bigram model's representational adequacy. A model that memorizes every parse 
would perform perfectly in this setting, but the grammatical bigram model is only 
able to recover four out of every five links. To see why, we can examine an example 
parse. Figure 2 shows how the models trained in Experiments I, II, and III parse 
the same test sentence. In the top parse, syndrome is incorrectly selected as a 
postdependent of the first on token rather than the second. This error can be 
attributed directly to the grammatical bigram independence assumption: because 
argument structure is not modeled, there is no reason to prefer the correct parse, 
in which both on tokens have a single dependent , over the chosen parse, in which 
the first has two dependents and the second has none.3 

Experiment II measures the generalization ability of the grammatical bigram model; 
in this setting, the model can recover three out of every five links. To see why the 
performance drops so drastically, we again turn to an example parse: the middle 
parse in Figure 2. Because the forces -+ on link was never observed in the training 
data, served has been made the head of both on tokens; ironically, this corrects the 
error made in the top parse because the planarity constraint rules out the incorrect 
link from the first on token to syndrome. Another error in the middle parse is a 
failure to select several as a predependent of forces; this error also arises because 
the combination never occurs in the training data. Thus, we can attribute this drop 
in performance to sparseness in the training data. 

We can compare the grammatical bigram model's parsing performance with the 
results reported by Eisner [8]. In that investigation, several different probabil­
ity models are ascribed to the simple dependency grammar described above and 

3 Although the model 's parse of acquired immune deficiency syndrome agrees with 
the labelled corpus, this particular parse reflects a failure of the head-word extraction 
heuristics; acquired and immune should be predependents of deficiency, and deficiency 
should be a predependent of syndrome. 
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tI 1--' f' �~ �(� III. <root> she has also served on several task forces on acquired immune deficiency syndrome 

Figure 2: The same test sentence, parsed by the models trained in each of the three 
experiments. Links are labelled with -log2 IXY I �I�:�~�1� IXY, the mutual information 
of the linked words; dotted edges are default attachments. 

are compared on a task similar to Experiment 11.4 Eisner reports that the best­
performing dependency grammar model (Model D) achieves a (direction-sensitive) 
link precision of 90.0%, and the Collins parser [6] achieves a (direction-sensitive) link 
precision of 92.6%. The superior performance of these models can be attributed to 
two factors: first, they include sophisticated models of argument structure; and sec­
ond, they both make use of part-of-speech taggers, and can "back-off" to non-lexical 
distributions when statistics are not available. 

Finally, Experiment III shows that when trained on unlabelled data, the grammat­
ical bigram model is able to recover two out of every five links. This performance 
is rather poor, and is only slightly better than chance; a model that chooses parses 
uniformly at random achieves 31.3% precision on L\est. To get an intuition for why 
this performance is so poor, we can examine the last parse, which was induced from 
unlabelled data. Because Wall Street Journal articles often report corporate news, 
the frequent co-occurrence of has -+ acquired has led to a parse consistent with 
the interpretation that the subject she suffers from AIDS, rather than serving on 
a task force to study it. We also see that a flat parse structure has been selected 
for acquired immune deficiency syndrome; this is because while this particular 
noun phrase occurs in the training data, its constituent nouns do not occur indepen­
dently with any frequency, and so their relative co-occurrence frequencies cannot 
be assessed. 

4 Discussion 

Future work. As one would expect, our experiments indicate that the parsing 
performance of the grammatical bigram model is not as good as that of state-of­
the-art parsers; however, its performance in Experiment II suggests that it may be 
useful in domains where partial accuracy is valuable and large amounts of unlabelled 
data are available. However, to realize that potential, the model must be improved 
so that its performance in Experiment III is closer to that of Experiment II. 

To that end, we can see two obvious avenues of improvement. The first involves 
increasing the model's capacity for generalization and preventing overfitting. The 

4The labelled corpus used in that investigation is also based upon a transformed ver­
sion of Treebank-III, but the head-word extraction heuristics were slightly different, and 
sentences with conjunctions were completely eliminated. However, the setup is sufficiently 
similar that we think the comparison we draw is informative. 




