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Abstract

A key question in neuroscience is how to encode sensory stimuli
such as images and sounds. Motivated by studies of response prop-
erties of neurons in the early cortical areas, we propose an encoding
scheme that dispenses with absolute measures of signal intensity
or contrast and uses, instead, only local ordinal measures. In this
scheme, the structure of a signal is represented by a set of equalities
and inequalities across adjacent regions. In this paper, we focus
on characterizing the fidelity of this representation strategy. We
develop a regularization approach for image reconstruction from
ordinal measures and thereby demonstrate that the ordinal repre-
sentation scheme can faithfully encode signal structure. We also
present a neurally plausible implementation of this computation
that uses only local update rules. The results highlight the robust-
ness and generalization ability of local ordinal encodings for the
task of pattern classification.

1 Introduction

Biological and artificial recognition systems face the challenge of grouping together
differing proximal stimuli arising from the same underlying object. How well the
system succeeds in overcoming this challenge is critically dependent on the nature
of the internal representations against which the observed inputs are matched. The
representation schemes should be capable of efficiently encoding object concepts
while being tolerant to their appearance variations.

In this paper, we introduce and characterize a biologically plausible representation
scheme for encoding signal structure. The scheme employs a simple vocabulary
of local ordinal relations, of the kind that early sensory neurons are capable of
extracting. Our results so far suggest that this scheme possesses several desirable
characteristics, including tolerance to object appearance variations, computational
simplicity, and low memory requirements. We develop and demonstrate our ideas in
the visual domain, but they are intended to be applicable to other sensory modalities
as well.

The starting point for our proposal lies in studies of the response properties of
neurons in the early sensory cortical areas. These response properties constrain



Figure 1: (a) A schematic contrast response curve for a primary visual cortex
neuron. The response of the neuron saturates at low contrast values. (b) An
idealization of (a). This unit can be thought of as an ordinal comparator, providing
information only about contrast polarity but not its magnitude.

the kinds of measurements that can plausibly be included in our representation
scheme. In the visual domain, many striate cortical neurons have rapidly saturating
contrast response functions [1, 4]. Their tendency to reach ceiling level responses at
low contrast values render these neurons sensitive primarily to local ordinal, rather
than metric, relations. We propose to use an idealization of such units as the basic
vocabulary of our representation scheme (figure 1). In this scheme, objects are
encoded as sets of local ordinal relations across image regions. As discussed below,
this very simple idea seems well suited to handling the photometric appearance
variations that real-world objects exhibit.

Figure 2: The challenge for a representation scheme: to construct stable descriptions
of objects despite radical changes in appearance.

As figure 2 shows, variations in illumination significantly alter the individual bright-
ness of different parts of the face, such as the eyes, cheeks, and forehead. Therefore,
absolute image brightness distributions are unlikely to be adequate for classifying
all of these images as depicting the same underlying object. Even the contrast
magnitudes across different parts of the face change greatly under different lighting
conditions. While the absolute luminance and contrast magnitude information is
highly variable across these images, Thoresz and Sinha [9] have shown that one can
identify some stable ordinal measurements. Figure 3 shows several pairs of average
brightness values over localized patches for each of the three images included in
figure 2. Certain regularities are apparent. For instance, the average brightness
of the left eye is always less than that of the forehead, irrespective of the lighting
conditions. The relative magnitudes of the two brightness values may change, but
the sign of the inequality does not. In other words, the ordinal relationship between
the average brightnesses of the <left-eye, forehead> pair is invariant under lighting
changes. Figure 3 shows several other such pair-wise invariances. It seems, therefore
that local ordinal relations may encode the stable facial attributes across different
illumination conditions. An additional advantage to using ordinal relations is their
natural robustness to sensor noise. Thus, it would seem that local ordinal repre-
sentations may be well suited for devising compact representations, robust against



Figure 3: The absolute brightnesses and their relative magnitudes change under dif-
ferent lighting conditions but several pair-wise ordinal relationships stay invariant.

large photometric variations, for at least some classes of objects. Notably, for simi-
lar reasons, ordinal measures have also been shown to be a powerful tool for simple,
efficient, and robust stereo image matching [3].

In what follows, we address an important open question regarding the expressive-
ness of the ordinal representation scheme. Given that this scheme ignores absolute
luminance and contrast magnitude information, an obvious question that arises is
whether such a crude representation strategy can encode object/image structure
with any fidelity.

2 Information Content of Local Ordinal Encoding

Figure 4 shows how we define ordinal relations between an image region pa and
its immediate neighbors pb = {pa1, . . . , pa8}. In the conventional rectilinear grid,
when all image regions pa are considered, four of the eight relations are redundant;
we encode the remaining four as {1, 0,−1} based on the difference in luminance
between two neighbors being positive, zero, or negative, respectively. To demon-
strate the richness of information encoded by this scheme, we compare the original
image to one produced by a function that reconstructs the image using local ordinal
relationships as constraints. Our reconstruction function has the form

f(x) = w · φ(x), (1)

where x = {i, j} is the position of a pixel, f(x) is its intensity, φ is a map from the
input space into a high (possibly infinite) dimensional space, w is a hyperplane in
this high-dimensional space, and u · v denotes an inner product.

Infinitely many reconstruction functions could satisfy the given ordinal constraints.
To make the problem well-posed we regularize [10] the reconstruction function sub-
ject to the ordinal constraints, as done in ordinal regression for ranking document
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———————————————————————————-Figure 4: Ordinal relationships between an image region pa and its neighbors.

retrieval results [5]. Our regularization term is a norm in a Reproducing Kernel
Hilbert Space (RKHS) [2, 11]. Minimizing the norm in a RKHS subject to the
ordinal constraints corresponds to the following convex constrained quadratic opti-
mization problem:

min
ξ,w

1

2
||w||2 + C

∑

p

ξp (2)

subject to

θ(δp)w · (φ(xpa
) − φ(xpb

)) ≥ |δp| − ξp, ∀ p and ξ ≥ 0, (3)

where the function θ(y) = +1 for y ≥ 0 and −1 otherwise, p is the index over
all pairwise ordinal relations between all pixels pa and their local neighbors pb (as
depicted in figure 4), ξp are slack variables which are penalized by C (the trade-off
between smoothness and ordinal constraints), and δp take integer values {−1, 0, 1}
denoting the ordinal relation (less than, equal to, or greater than, respectively)
between pa and pb; for the case δp = 0 the inequality in (3) will be a strict equality.

Taking the dual of (2) subject to constraints (3) results in the following convex
quadratic optimization problem which has only box constraints:

max
α

∑

p

|δp|αp −
1

2

∑

p

∑

q

αpαqK̃pq (4)

subject to

0 ≤ αp ≤ C if δp > 0,

−C ≤ αp ≤ C if δp = 0, (5)

−C ≤ αp ≤ 0 if δp < 0,

where αp are the dual Lagrange multipliers, and the elements of the matrix K̃ have
the form

K̃pq = (φ(xpa
) − φ(xpb

)) · (φ(xqa
) − φ(xqb

))

= K(xpa
,xqa

) − K(xpb
,xqa

) − K(xpa
,xqb

) + K(xpb
,xqb

),

where K(y,x) = φ(y) ·φ(x) using the standard kernel trick [8]. In this paper we use
only Gaussian kernels K(y,x) = exp(−||x−y||2/2σ2). The reconstruction function,
f(x), obtained from optimizing (4) subject to box constraints (5) has the following
form

f(x) =
∑

p

αp (K(x,xpa
) − K(x,xpb

)) . (6)

Note that in general many of the αp values may be zero – these terms do not
contribute to the reconstruction, and the corresponding constraints in (3) were not



0 128 255
0

100

200

300

0 128 255
0

100

200

300

(a) (b) (c) (d)

Figure 5: Reconstruction results from the regularization approach. (a) Original
images. (b) Reconstructed images. (c) Absolute difference between original and
reconstruction. (d) Histogram of absolute difference.

required. The remaining αp with absolute value less than C satisfy the inequality
constraints in (3), whereas those with absolute value at C violate them.

Figure 5 depicts two typical reconstructions performed by this algorithm. The
difference images and error histograms suggests that the reconstructions closely
match the source images.

3 Discussion

Our reconstruction results suggest that the local ordinal representation can faith-
fully encode image structure. Thus, even though individual ordinal relations are
insensitive to absolute luminance or contrast magnitude, a set of such relations im-
plicitly encodes metric information. In the context of the human visual system, this
result suggests that the rapidly saturating contrast response functions of the early
visual neurons do not significantly hinder their ability to convey accurate image
information to subsequent cortical stages.

An important question that arises here is what are the strengths and limitations of
local ordinal encoding. The first key limitation is that for any choice of neighbor-
hood size over which ordinal relations are extracted, there are classes of images for
which the local ordinal representation will be unable to encode the metric struc-
ture. For a neighborhood of size n, an image with regions of different luminance
embedded in a uniform background and mutually separated by a distance greater
than n would constitute such an image. In general, sparse images present a prob-
lem for this representation scheme, as might foveal or cortical “magnification,” for
example. This issue could be addressed by using ordinal relations across multiple
scales, perhaps in an adaptive way that varies with the smoothness or sparseness of
the stimulus.

Second, the regularization approach above seems biologically implausible. Our in-
tent in using this approach for reconstructions was to show via well-understood
theoretical tools the richness of information that local ordinal representations pro-



Figure 6: Reconstruction results from the relaxation approach.

vide. In order to address the neural plausibility requirement, we have developed a
simple relaxation-based approach with purely local update rules of the kind that
can easily be implemented by cortical circuitry. Each unit communicates only with
its immediate neighbors and modifies its value incrementally up or down (starting
from an arbitrary state) depending on the number of ordinal relations in the positive
or negative direction. This computation is performed iteratively until the network
settles to an equilibrium state. The update rule can be formally stated as

Rpa,t+1 = Rpa,t + ∆
∑

pb

(θ(Rpa,t −Rpb,t) − θ(Ipa
− Ipb

)), (7)

where Rpa,t is the intensity of the reconstructed pixel pa at step t, Ipa
is the in-

tensity of the corresponding pixel in the original image, ∆ is a positive update
rate, and θ and pb are as described above. Figure 6 shows four examples of image
reconstructions performed using a relaxation-based approach.

A third potential limitation is that the scheme does not appear to constitute a
compact code. If each pixel must be encoded in terms of its relations with all of
its eight neighbors, where each relation takes one of three values, {−1, 0, 1}, then
what has been gained over the original image where each pixel is encoded by 8 bits?
There are three ways to address this question.

1. Eight relations per pixel is highly redundant – four are sufficient. In fact, as
shown in figure 7, the scheme can also tolerate several missing relations.

Figure 7: Five reconstructions, shown here to demonstrate the robustness of local
ordinal encoding to missing inputs. From left to right: reconstructions based on
100%, 80%, 60%, 40%, and 20% of the full set of immediate neighbor relations.

2. An advantage to using ordinal relations is that they can be extracted and trans-
mitted much more reliably than metric ones. These relations share the same spirit
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Figure 8: A small collection of ordinal relations (a), though insufficient for high
fidelity reconstruction, is very effective for pattern classification despite significant
appearance variations. (b) Results of using a local ordinal relationship based tem-
plate to detect face patterns. The program places white dots at the centers of
patches classified as faces. (From Thoresz and Sinha, in preparation.)

as loss functions used in robust statistics [6] and trimmed or Winsorized estimators.

3. The intent of the visual system is often not to encode/reconstruct images with
perfect fidelity, but rather to encode the most stable characteristics that can aid in
classification. In this context, a few ordinal relations may suffice for encoding objects
reliably. Figure 8 shows the results of using less than 20 relations for detecting faces.
Clearly, such a small set would not be sufficient for reconstructions, but it works
well for classification. Its generalization arises because it defines an equivalence
class of patterns.

In summary, the ordinal representation scheme provides a neurally plausible strat-
egy for encoding signal structure. While in this paper we focus on demonstrating
the fidelity of this scheme, we believe that its true strength lies in defining equiv-
alence classes of patterns enabling generalizations over appearance variations in
objects. Several interesting directions remain to be explored. These include the
study of ordinal representations across multiple scales, learning schemes for identi-
fying subsets of ordinal relations consistent across different instances of an object,
and the relationship of this work to multi-dimensional scaling [12] and to the use
of truncated, quantized wavelet coefficients as “signatures” for fast, multiresolution
image querying [7].
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