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Abstract 

A flexible pattern-matching analog classifier is presented in con-
junction with a robust image representation algorithm called Prin-
cipal Axes Projection (PAP). In the circuit, the functional form of 
matching is configurable in terms of the peak position, the peak height 
and the sharpness of the similarity evaluation. The test chip was fabri-
cated in a 0.6-µm CMOS technology and successfully applied to 
hand-written pattern recognition and medical radiograph analysis using 
PAP as a feature extraction pre-processing step for robust image coding. 
The separation and classification of overlapping patterns is also ex-
perimentally demonstrated. 

1 Introduct ion 

Pattern classification using template matching techniques is a powerful tool in im-
plementing human-like intelligent systems. However, the processing is computa-
tionally very expensive, consuming a lot of CPU time when implemented as soft-
ware running on general-purpose computers. Therefore, software approaches are not 
practical for real-time applications. For systems working in mobile environment, in 
particular, they are not realistic because the memory and computational resources 
are severely limited. The development of analog VLSI chips having a fully parallel 
template matching architecture [1,2] would be a promising solution in such applica-
tions because they offer an opportunity of low-power operation as well as very 
compact implementation.  

In order to build a real human-like intelligent system, however, not only the pattern 
representation algorithm but also the matching hardware itself needs to be made 
flexible and robust in carrying out the pattern matching task. First of all, 
two-dimensional patterns need to be represented by feature vectors having substan-
tially reduced dimensions, while at the same time preserving the human perception 
of similarity among patterns in the vector space mapping. For this purpose, an im-
age representation algorithm called Principal Axes Projection (PAP) has been de-



 

veloped [3] and its robust nature in pattern recognition has been demonstrated in the 
applications to medical radiograph analysis [3] and hand-written digits recognition 
[4]. However, the demonstration so far was only carried out by computer simulation. 

Regarding the matching hardware, high-flexibility analog template matching circuits 
have been developed for PAP vector representation. The circuits are flexible in a 
sense that the matching criteria (the weight to elements, the strictness in matching) 
are configurable. In Ref. [5], the fundamental characteristics of the building block 
circuits were presented, and their application to simple hand-written digits was pre-
sented in Ref. [6]. The purpose of this paper is to demonstrate the robust nature of 
the hardware matching system by experiments. The classification of simple 
hand-written patterns and the cephalometric landmark identification in gray-scale 
medical radiographs have been carried out and successful results are presented. In 
addition, multiple overlapping patterns can be separated without utilizing a priori 
knowledge, which is one of the most difficult problems at present in artificial intel-
ligence. 

2 Image representat ion by PAP 

PAP is a feature extraction technique using the edge information. The input image 
(64x64 pixels) is first subjected to pixel-by-pixel spatial filtering operations to de-
tect edges in four directions: horizontal (HR); vertical (VR); +45 degrees (+45); and 
–45 degrees (-45). Each detected edge is represented by a binary flag and four edge 
maps are generated. The two-dimensional bit array in an edge map is reduced to a 
one-dimensional array of numerals by projection. The horizontal edge flags are ac-
cumulated in the horizontal direction and projected onto vertical axis. The vertical, 
+45-degree and –45-degree edge flags are similarly projected onto horizontal, 
-45-degree and +45-degree axes, respectively. Therefore the method is called “Prin-
cipal Axes Projection (PAP)” [3,4]. Then each projection data set is series connected 
in the order of HR, +45, VR, -45 to form a feature vector. Neighboring four ele-
ments are averaged and merged to one element and a 64-dimensional vector is fi-
nally obtained. This vector representation very well preserves the human perception 
of similarity in the vector space. In the experiments below, we have further reduced 
the feature vector to 16 dimensions by merging each set of four neighboring ele-
ments into one, without any significant degradation in performance. 

3 Circui t  conf igurat ions 
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Figure 1: Schematic of vector element matching circuit: (a) pyramid (gain re-
duction) type; (b) plateau (feedback) type. The capacitor area ratio is indicated 
in the figure. 



 

The basic functional form of the similarity evaluation is generated by the shortcut 
current flowing in a CMOS inverter as in Refs. [7,8,9]. However, their circuits were 
utilized to form radial basis functions and only the peak position was programmable. 
In our circuits, not only the peak position but also the peak height and the sharpness 
of the peak response shape are made configurable to realize flexible matching op-
erations [5].  

Two types of the element matching circuit are shown in Fig. 1. They evaluate the 
similarity between two vector elements. The result of the evaluation is given as an 
output current (IOUT) from the pMOS current mirror. The peak position is temporar-
ily memorized by auto-zeroing of the CMOS inverter. The common-gate transistor 
with VGG stabilizes the voltage supply to the inverter. By controlling the gate bias 
VGG, the peak height can be changed. This corresponds to multiplying a weight fac-
tor to the element. The sharpness of the functional form is taken as the strictness of 
the similarity evaluation. In the pyramid type circuit (Fig. 1(a)), the sharpness is 
controlled by the gain reduction in the input. In the plateau type (Fig. 1(b)), the 
output voltage of the inverter is fed back to input nodes and the sharpness changes 
in accordance with the amount of the feedback.  
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Figure 2: Schematic of n-dimensional vector matching circuit utilizing the 
pyramid type vector element circuits. 
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The total matching score between input and template vectors is obtained by taking 
the wired sum of all IOUT’s from the element matching circuits as shown in Fig. 2. A 
multiplier circuit as utilized in Ref. [8] was eliminated because the radial basis func-
tion is not suitable for the template matching using PAP vectors. ISUM, the sum of 
IOUT’s, is then sunk through the nMOS with the VRAMP input. This forms a current 
comparator circuit, which compares ISUM and the sink current in the nMOS with 
VRAMP. The VOUT nodes are connected to a time-domain Winner-Take-All circuit [9]. 
A common ramp down voltage is applied to the VRAMP nodes of all vector matching 
circuits. When VRAMP is ramped down from VDD to 0V, the vector matching circuit 
yielding the maximum ISUM firstly upsets and its output voltage (VOUT) shows a 
0-to-1 transition. The time-domain WTA circuit senses the first upsetting signal and 
memorizes the location in the open-loop OR-tree architecture [10]. In this manner, 
the maximum-likelihood template vector is easily identified. 

Figure 3: Photomicrograph of 
soft-pattern-matching classifier
circuit. 



 

The circuits were designed and fabricated in a 0.6-µm double-poly triple-metal 
CMOS technology. Fig. 3 shows the photomicrograph of a pattern classifier circuit 
for 16-dimensional vectors. It contains 15 vector matching circuits. One element 
matching circuit occupies the area of 150µm x 110µm. In the latest design, however, 
the area is reduced to 54 µm x 68 µm in the same technology by layout optimization. 
Further area reduction is anticipated by employing high-K dielectric films for ca-
pacitors since the capacitors occupy a large area. The full functioning of the chip 
was experimentally confirmed [6]. In the following experiments, the simple vector 
matching circuit in Fig. 2 was utilized to investigate the response from each tem-
plate vector instead of just detecting the winner using the full chip. 

4 Exper imental  resul ts  and discussion 

4 .1  V ec tor -e l ement  match ing  c i r cu i t  
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Figure 4: Measured characteristics: (a) pyramid type; (b) plateau type. VGG was 
varied from 3.0V to 4.5V, and control signals A~C from 000 to 111 for sharp-
ness control. 

Fig. 4 shows the measured characteristics of vector-element matching circuits in 
both linear and log plots. The peak position was set at 1.05V by auto-zeroing. The 
peak height was altered by VGG. Also, the operation mode was altered from the 
above-threshold region to the sub-threshold region by VGG. In the plateau type cir-
cuit (Fig. 4(b)), IOUT becomes constant around the peak position and the flat region 
widens in proportion to the amount of feedback. This is because the inverter oper-
ates so as to keep the floating gate potential constant in the high-gain region of the 
inverter as in the case of virtual ground of an operational amplifier. 



 

4 .2  M atch i ng  o f  s i mpl e  hand-w r i t ten  pa t te rns  

Fig. 5 demonstrates the matching results for the simple input patterns. 16 templates 
were stored in the matching circuit and several hand-written pattern vectors were 
presented to the circuit as inputs. A slight difference in the matching score is ob-
served between the pyramid type and the plateau type, but the answers are correct 
for both types. Fig. 6 shows the effect of sharpness variation. As the sharpness gets 
steeper, all the scores decrease. However, the score ratios between the winner and 
loosers are increased, thus enhancing the winner discrimination margins. The 
matching results with varying operational regimes of the circuit are given in Fig. 7. 
The circuit functions properly even in the sub-threshold regime, demonstrating the 
opportunity of extremely low power operation. 
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Figure 5: Result of simple pattern matching: (a) pyramid type (left) where gain 
reduction level was set with ABC=010; (b) plateau type (right) where feedback 
ratio was set with ABC=101. 
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Figure 6: Effect of sharpness variation in the pyramid type with ABC=010. 
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Figure 7: Matching results as a function of VGG. Correct results are obtained in 
the sub-threshold regime as well as in the above-threshold regime (the pyramid 
type was utilized). 

4 .3  Appl i ca t io n  to  g ra y -s ca l e  medi ca l  rad i og raph ana l ys i s  

In Fig. 8, are presented the result of cephalometric landmark identification experi-
ments, where the Sella (pituitary gland) pattern search was carried out using the 
same matching circuit. Since the 64-dimension PAP representation is essential for 
grayscale image recognition, the 64-dimension vector was divided into four 



 

16-dimension vectors and the matching scores were measured separately and then 
summed up by off-chip calculation. The correct position was successfully identified 
both in the above-threshold (Fig. 8(b)) and the sub-threshold (Fig. 8(c)) regimes 
using the 14 learned vectors as templates. In the previous work [3], successful 
search was demonstrated by the computer simulation. 
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Figure 8: Matching results of Sella search using pyramid type with ABC=000: 
(a) input image; (b) above-threshold regime; (c) sub-threshold regime. 

4 .4  Sepa ra t i o n  o f  over la pp i ng  pa t te rns  

Suppose an unknown pattern is presented to the matching circuit. The pattern might 
consist of a single or multiple overlapping patterns. Let X  represent the input vector 
and W1st the winner (best matched) vector obtained by the matching circuit. Let the 
first matching trial be expressed as follows: 

1st trial: matching→ 1stX W  

Then, the residue vector (X-W1st) is generated. The subtraction is perfomed in the 
vector space. When an element in the residue vector becomes negative, the value is 
set to 0. Such operation is easily implemented using the floating gate technique. 
Here, the residue was obtained by off-line calculation. If the input pattern is single, 
the residue vector is meaningless: only the leftover edge information remains in the 
residue vector. If the input consists of overlapping patterns, the edge information of 
other patterns remains. If the residue vector is very small, we can expect that the 
input is single. But in many cases, the residue vector is not so small due to the dis-
tortion in hand-written patterns. Thus, it is almost impossible to judge which is the 
case only from the magnitude of the residue vector. Therefore, we proceed to the 
second trial to find the second winner: 

2nd trial: matching− →1st 2ndX W W  

With the same sequence, the second residue vector (X-W1st-W2nd), the third 
(X-W1st-W2nd-W3rd) and so forth are generated by repeating the winner subtraction 
after each trial. Then, new template vectors are generated such as W1st+W2nd, 
W1st+W2nd+W3rd, and so forth. If the input vector is that of a single pattern, the 
matching score is the highest at W1st and the scores are lower at W1st+W2nd and 
W1st+W2nd+W3rd. On the other hand, if the input vector is that of two overlapping 
patterns, the score is the highest at W1st+W2nd. This procedure can be terminated 
automatically when the new template composed of n overlapping patterns yields 
lower score than that of n-1 overlapping patterns. In this manner, we are able to 



 

know how many patterns are overlapping and what patterns are overlapping without 
a priori knowledge. An example of separating multiple overlapping patterns is illus-
trated in Fig. 9. 
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Figure 9: Experimental result illustrating the algorithm for separating overlap-
ping patterns. The solid black bars indicate the winner locations. 
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Figure 10: Measured results demonstrating separation of multiple overlapping 
patterns: (a) result of separation and classification (A~F are depicted in (b)); 
(b) newly created templates such as W1st+W2nd, W1st+W2nd+W3rd, and so on. 

Several other examples are shown in Fig. 10. Pattern #1 is correctly classified as a 
single rectangle by yielding the higher score for single template than that for 
W1st+W2nd. Pattern #3 consists of three overlapping patterns, but is erroneously 
recognized as four overlapping patterns. However, the result is not against human 
perception. When we look at pattern #3, a triangle is visible in the pattern. This 
mistake is quite similar to that made by humans. 

 

 

 

 



 

5 Conclusions 

A soft-pattern matching circuit has been demonstrated in conjunction with a robust 
image representation algorithm called PAP. The circuit has been successfully ap-
plied to hand-written pattern recognition and medical radiograph analysis. The rec-
ognition of overlapping patterns similar to human perception has been also experi-
mentally demonstrated. 
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