
Switch Packet Arbitration via Queue-Learning

Timothy X Brown
Electrical and Computer Engineering
Interdisciplinary Telecommunications

University of Colorado
Boulder, CO 80309-0530
timxb@colorado.edu

Abstract

In packet switches, packets queue at switch inputs and contend for out-
puts. The contention arbitration policy directly affects switch perfor-
mance. The best policy depends on the current state of the switch and
current traffic patterns. This problem is hard because the state space,
possible transitions, and set of actions all grow exponentially with the
size of the switch. We present a reinforcement learning formulation of
the problem that decomposes the value function into many small inde-
pendent value functions and enables an efficient action selection.

1 Introduction

Reinforcement learning (RL) has been applied to resource allocation problems in telecom-
munications. e.g., channel allocation in wireless systems, network routing, and admis-
sion control in telecommunication networks [1, 3, 7, 11]. These have demonstrated rein-
forcement learning can find good policies that significantly increase the application reward
within the dynamics of the telecommunications problems. However, a key issue is how to
scale these problems when the state space grows quickly with problem size.

This paper focuses on packet arbitration for data packet switches. Packet switches are un-
like telephone circuit switches in that packet transmissions are uncoordinated and clusters
of traffic can simultaneously contend for switch resources. A packet arbitrator decides the
order packets are sent through the switch in order to minimize packet queueing delays and
the switch resources needed. Switch performance depends on the arbitration policy and the
pattern of traffic entering the switch.

A number of packet arbitration strategies have been developed for switches. Many have
fixed policies for sending packets that do not depend on the actual patterns of traffic in the
network [10]. Under the worse case traffic, these arbitrators can perform quite poorly [8].
Theoretical work has shown consideration of future packet arrivals can have significant
impact on the switch performance but is computationally intractable (NP-Hard) to use [4].
As we will show, a dynamic arbitration policy is difficult since the state space, possible
transitions, and set of actions all grow exponentially with the size of the switch.

In this paper, we consider the problem of finding an arbitration policy that dynamically
and efficiently adapts to traffic conditions. We present queue-learning, a formulation that
effectively decomposes the problem into many small RL sub-problems. The independent

��� 0.3 0.3 0.3
0.6 0 0.3
0 0.6 0.3 Switch

Arrivals
132

1

2

1 1

2

3

3 x 3

OutQueues

� � 2 1 1
1 0 0
0 1 0

(a) (b) (c)

Figure 1: The packet arbitration model. (a) In each time slot, packet sources generate�����
	 �
packets on average at input � for output � . (b) Packets arrive at an input-queued

switch and are stored in queues. The number label on each packet indicates to which
output the packet is destined. (c) The corresponding queue states, where ����	 � indicates
the number of packets waiting at input � destined for output � .

RL problems are coupled via an efficient algorithm that trades off actions in the different
sub-problems. Results show significant performance improvements.

2 Problem Description

The problem is comprised of � traffic sources generating traffic at each of � inputs to
a packet data switch as shown in Figure 1. Time is divided into discrete time slots and
in each time slot each source generates 0 or 1 packets. Each packet that arrives at the
input is labeled with which of the � outputs the packet is headed. In every time slot, the
switch takes packets from inputs and delivers them at their intended output. We describe
the specific models for each used in this paper and then state the packet arbitration problem.

2.1 The Traffic Sources

At input � , a traffic source generates a packet destined for output � with probability
� ���

at
the beginning of each time slot. If

� ���� ��� � � ��� is the load on input � and
�������� ��� � � ���

is the load on output � , then for stability we require
� �������� � !#" � and

���$���� �%� � !&" � .

The matrix
���(' �����*)

only represents long term average loads between input � and output
� . We treat the case where packet arrivals are uncorrelated over time and between sources
so that in each time slot, a packet arrives at input � with probability

� ����
and given that we

have an arrival, it is destined for output � with probability
�����,+*� ����

. Let the set of packet
arrivals be - .

2.2 The Switch

The switch alternates between accepting newly arriving packets and sending packets in
every time slot. At the start of the time slot the switch sends packets waiting in the input
queues and delivers them to the correct output where they are sent on. Let . �/',0 ���)
represent the set of packets sent where

0 ��� � �
if a packet is sent from input � to output

� and
0 ��� � !

otherwise. The packets it can send are limited by the input and output
constraints: the switch can send at most one packet per input and can deliver at most one
packet to each output. After sending packets, the new arrivals are added at the input and
the switch moves to the next time slot. Other switches are possible, but this is the simplest
and a common architecture in high-speed switches.

2.3 The Input Queues

Because the traffic sources are un-coordinated, it is possible for multiple packets to arrive
in one time slot at different inputs, but destined for the same output. Because of the output
constraint, only one such packet may be sent and the others buffered in queues, one queue
per input. Thus packet queueing is unavoidable and the goal is to limit the delays due to
queueing.

The queues are random access which means packets can be sent in any order from a queue.
For the purposes of this paper, all packets waiting at an input and destined for the same
output are considered equivalent. Let � � ' ���*) be a matrix where ��� is the number of
packets waiting at input � for output � as shown in Figure 1c.

2.4 Packet Arbitration

The packet arbitration problem is: Given the state of the input queues, � , choose a set of
packets to send, . , so at most one packet is sent from each input and at most one packet is
delivered to each output. We want a packet arbitration policy that minimizes the expected
packet wait time.

When . is sent the remaining packets must wait at least one more time slot before they can
be sent. Let

� � � be the total number of packets in all the input queues, let
� - � be the number

of new arrivals, and let
� . � be the number of packets sent. Thus, the total wait of all packets

is increased by the number of packets that remain:
� � ����� - ����� . � . By Little’s theorem, the

expected wait time is proportional to the expected number of packets waiting in each time
slot [10]). Thus, we want a policy that minimizes the expected value of

� � ����� - �	�
� . � .
The complexity of this problem is high. Given an � input and � output switch. The input
and output constraints are met with equality if . is a subset of a permutation matrix (zeros
everywhere except that every row has at most one one and every column has one one). This
implies there are as many as ��� possible . to choose from. In each time slot at each input,
a packet can arrive for one of � outputs or not at all. This implies as many as � � �����
possible transitions after each send. If each ��� ranges from 0 to � packets, then the number
of states in the system is � ��� . A minimal representation would only indicate whether each
sub-queue is empty or not, resulting in � ��� states. Thus, every aspect of the problem grows
exponentially in the size of the switch.

Traditionally switching solves these problems by not considering the possible next arrivals,
and using a search algorithm with time-complexity polynomial in � that considers only
the current state � . For instance the problem can be formulated as a so-called matching
problem and polynomial algorithms exist that will send the largest . possible [2, 6, 8].

While maximizing the packets sent in every time slot may seem like a solution, the problem
is more interesting than this. In general, many possible . will maximize the number of
packets that are sent. Which one can we send now so that we will be in the best possible
state for future time slots? Some heuristics can guide this choice, but these are insensitive
to the traffic pattern

�
[9]. Further, it can be shown that to minimize the total wait it may be

necessary to send less than the maximum number of packets in the current time slot [4]. So,
we look to a solution that efficiently finds policies that minimize the total wait by adapting
to the current traffic pattern.

The problem is especially amenable to RL for two reasons. (1) Packet rates are fast, up to
millions of packets per second so that many training examples are available. (2) Occasional
bad decisions are not catastrophic. They only increase packet delays somewhat, and so it
is possible to freely learn in an online system. The next section describes our solution.

3 Queue-Learning Solution

At any given time slot, � , the system is in a particular state, � � . New packets, - � , arrive
and the packet arbitrator can choose to send any valid . � . The cost, � ��� - � . � is the � � � � �� - � ��� � . � � � packets that remain. The task of the learner is to determine a packet arbitration
policy that minimizes the total average cost. We use the Tauberian approximation, that is,
we assume the discount factor is close enough to 1 so that the discounted reward policy is
equivalent to the average reward policy [5]. Since minimizing the expected value of this
cost is equivalent to minimizing the expected wait time, this formulation provides an exact
match between RL and the problem task.

As shown already every aspect of this problem scales badly. The solution to this problem is
three fold. First we use online learning and afterstates [12] to eliminate the need to average
over the � � ��� �

possible next states. Second, we show how the value function can yield
a set of inputs into a polynomial algorithm for choosing actions. Third, we decompose the
value function so the effective number of states is much smaller than � � � . We describe
each in turn.

3.1 Afterstates

RL methods solve MDP problems by learning good approximations to the optimal value
function, ��� . A single time slot consists of two stages: new arrivals are added to the
queues and then packets are sent (see Figure 2). The value function could be computed
after either of these stages. We compute it after packets are sent since we can use the notion
of afterstates to choose the action. Since the packet sending process is deterministic, we
know the state following the send action. In this case, the Bellman equation is:

� � � � ���
	������������������ 	���� � ��� - � . � �! � � �#" �%$'&
where (��� - � is the set of actions available in the current state � after arrival event - ,� ��� - � . � � � � � � � - � � � . � is the effective immediate cost,

is the discount factor, and�
	 '*))

is the expectation over possible events and the resulting next state is � " .
We learn an approximation to ��� using TD(0) learning. At time-step � on a transition from
state � � to � �,+�- on action . � after event - � , we update an estimate to � via

� � � � � � � � � �/. � � � � � � . � � - � � �! � � �,+�- � � � � � �%$
where

. � is the learning step size.

With afterstates, the action (which set of packets to send) depends on both the current state
and the event. The best action is the one that results in the lowest value function in the
next state (which is known deterministically given � � , - � , and . �). In this way, afterstated
eliminates the need to average over a large number of non-zero transitions to find the best
action.

3.2 Choosing the Action

We compare every action with the action of not sending any packets. The best action, is the
set of packets meeting the input and output constraints that will reduce the value function
the most compared to not sending any packets.

Each input-output pair � � � � has an associated queue at the input, ��� . Packets in ��� contend
with other packets at input � and other packets destined for output � . If we send a packet
from ��� , then no packet at the same input or output will be sent. In other words, packets at

Queue
State� �

Packet
Arrivals- �

Queue After
Arrivals� � - � �

Packets
Sent. �

Next
State� �,+�-

2 1 1
1 0 0
0 1 0

��� 0 1 0
0 0 0
0 1 0

��� 2 2 1
1 0 0
0 2 0

��� 0 0 1
1 0 0
0 1 0

��� 2 2 0
0 0 0
0 1 0

Stochastic Step Deterministic Step� � � � Decision � � �,+�- �
Figure 2: Timing of packet arrivals and sends relative to decisions and the value function.

 ��� interact primarily with packets in the same row and column. Packets in other rows and
columns only have an indirect effect on the value of sending a packet from ��� .
This suggests the following approximation. Let � - � be the number of packets in every
subqueue after arrivals - in state � and before the decision. Let � ��� � - � � be the reduction
in the value function if one packet is sent from subqueue � � � � (� ��� � - � � � !

if the
subqueue is empty). We can reformulate the best action as:

. �
argmax�����	��
������ � � � � ��� � - � � 0 ���

subject to the constraints: 0 ��� 	 ' ! � �) " � � �
� � 0 ����� � " �

� � 0 ��� � � " �

This problem can be solved as a linear program and is also known as the weighted matching
or the assignment problem which has a polynomial time solution [13]. In this way, we
reduce the search over the � � � � possible actions to a polynomial time solution.

3.3 Decomposing the Value Function

The interaction between queues in the same row or the same column is captured primarily
by the input and output constraints. This suggests a further simplifying approximation with
the following decomposition.

We compute a separate value function for each ��� , denoted � ��� � � . In principle, this can
depend on the entire state � , but can be reduced to consider only elements of the state
relevant to ��� . Every ��� estimates its associated value function � ��� � � based on the packets
at input � and packets destined for output � .

Many forms of � ��� � � could be considered, but we consider a linear approximation. Let
����

be the total number of packets waiting at input � . Let �$� ��
be the total number of packets

waiting for output � .

With these variables we define a linear approximation with parameters � � ���� � � � � � ��� � :� ��� � � � ��� � � - ��� � ���� ���� � ���
���� � ���

���� � � � ��� �$���� � ��� ������ � � (1)

It follows the value of sending a packet (compared to not sending a packet) from ��� is

� ��� � - � � � � - � ��� � ��� � ��� �* ��� - � � ��� � ��� �*
���� - � � ��� � ��� �* �$� �� - � � ��� �

This is computed for each � � � � and used in the weighted matching of Section 3.2 to com-
pute which packets to send. Learning for this problem is standard TD(0) for linear approx-
imations [12]. The combination of decomposition and linear value function approximation
reduces the problem to estimating � � � � parameters.

No explicit exploration is used since from the perspective of � ��� , enough stochasticity al-
ready exists in the packet arrival and send processes. To assist the switch early in the
learning, the switch sends the packets from a maximum matching in each time slot (instead
of the packets selected by queue learning). This initial assist period during the training was
found to bring the switch into a good operating regime from which it could learn a better
policy.

In summary, we simplify the exponential computation for this problem by decomposing
the state into � � substates. Each substate computes the value of sending a packet versus
not sending a packet, and a polynomial algorithm computes the action that maximizes the
total value across substates subject to the input and output constraints.

4 Implementation Issues

A typical high speed link rate is at OC-3 rates (155Mbps). In ATM at this rate, the packet
rate is 366k time slots/s or less than 30 sec for

��!��
time slots. For learning, the number of

floating point operations per time slot is approximately
��� � � where

�
is the number of

parameters in the linear approximation. At the above packet rate, for an � ���
switch, this

translates into 650 MFLOPS which is within existing highend microprocessor capacity. For
computation of the packets to send, the cost is approximately

� � � to compute the weights.
To compute the maximum weight matching an � � ���
	�� � � algorithm exists [13].

New optical transport technologies are pushing data rates one and two orders of magnitude
greater than OC-3 rates. In this case, if computing is limited then the queue-learning can
learn on a subsample of time slots. To compute the packets to send, the decomposition has
a natural parallel implementation that can divide it among processors. Massively parallel
neural networks can also be used to compute the maximum weighted matching [2, 9].

5 Simulation Results

We applied our procedure to
����

switches under different loads. The parameters used in
the experiment are shown in Table 1. In each experiment, the queue-learning was trained
for an initial period, and then the mean wait time, ����� is measured over a test period. We
compared performance to two alternatives. One alternative sends the largest number of
packets in every time slot. If multiple sets are equally large it chooses randomly between
them. We simulate this arbitrator and measure the mean packet wait time, ����� �����
�� . The
best possible switch is a so-called output-queued switch [10]. Such a switch is difficult to
build at high-speeds, but we can compute its mean packet wait time, � ����� , via simulation.
The results are specified in normalized form as ������ �����
�� � � ��� � + ������ �����
�� � � �$� � � .
Thus if our queue-learning solution is no better than a max send arbitrator, the gain will be
0 and if we achieve the performance of the output-queued switch, the gain will be 1.

We experimented on five different traffic loads.
� - is a uniform load of

! �
packets per

input per time slot with each packet uniformly destined for one of the outputs. Similarly,� � is a uniform load of
! � !

. The uniform load is a common baseline scenario for evaluating
switches.� � and

� � are random matrices where the sum of loads per row and column are 0.6 and
0.9 (as in

� - and
� �) but the distribution is not uniform. This is generated by summing �

permutation matrices and than scaling the entries to yield the desired row and column sums

Table 1: RL parameters.

Parameter Value
Discount,

0.99

Learn Rate,
. � ��� � -- + � � - ��� ��� �

Assist Period
� ! � time slots

Train Period
� ! �

time slots
Test Period

� ! �
time slots

Table 2: Simulation Results.

Switch Loading
Normalized Wait
Reduction (� ���)� - (uniform 0.6 load) 10%� � (uniform 0.9 load) 50%� � (random 0.6 load) 14%� � (random 0.9 load) 70%� � (truncated 0.9 load) 84%

(e.g. Figure 1a). The random load is a more realistic in that loads tend to vary among the
different input/output pairs.� � is

� � , except that all
�����

for the last � + � outputs is set to zero. This simulates the more
typical case of traffic being concentrated on a few outputs.

We emphasize that a different policy is learned for each of these loads. The different loads
suggest the kinds of improvements that we might expect if queue-learning is implemented.
The results for the five loads are given in Table 2.

6 Conclusion

This paper showed that queue learning is able to learn a policy that significantly reduces
the wait times of packets in a high-speed switch. It uses a novel decomposition of the
value function combined with efficient computation of the action to overcome the prob-
lems a traditional RL approach would have with the large number of states, actions, and
transitions. This is able to gain 10% to 84% of the possible reductions in wait times. The
largest gains are when the network is more heavily loaded and delays are largest. The gains
are also largest when the switch load is least uniform which is what is most likely to be
encountered in practice.

Traditional thinking in switching is that input-queued switches are much worse than the op-
timal output-queued switches and improving performance would require increasing switch-
ing speeds (the electronic switching is already the slowest part of the otherwise optical net-
working), or using information of future arrivals (which may not exists and in any case is
NP-Hard to use optimally). The queue-learning approach is able to use its estimates of the
future impact of its packet send decisions in a consistent framework that is able to bridge
the majority of the gap between current input queueing and optimal output queueing.

Acknowledgment

This work was supported by CAREER Award: NCR-9624791.

References

[1] Boyan, J.A., Littman, M.L., “Packet routing in dynamically changing networks: a
reinforcement learning approach,” in Cowan, J.D., et al., ed. Advances in NIPS 6,
Morgan Kauffman, SF, 1994. pp. 671–678.

[2] Brown, T.X, Lui, K.H., “Neural Network Design of a Banyan Network Controller,”
IEEE JSAC, v. 8, n. 8, pp. 1428–1438, Oct., 1990.

[3] Brown, T.X, Tong, H., Singh, S., “Optimizing admission control while ensuring qual-
ity of service in multimedia networks via reinforcement learning,” in Advances NIPS
11, ed. M. Kearns et al., MIT Press, 1999.

[4] Brown, T.X, Gabow, H.N., “Future Information in Input Queueing,” submitted to
Computer Networks, April 2001.

[5] Gabor, Z., Kalmar, Z., Szepesvari, C., “Multi-criteria Reinforcement Learning,” In-
ternational Conference on Machine Learning, Madison, WI, July, 1998.

[6] J. Hopcroft and R. Karp, “An �
� � � algorithm for maximum matchings in bipartite

graphs”, SIAM J. Computing 2, 4, 1973, pp 225-231.

[7] Marbach, P., Mihatsch, M., Tsitsiklis, J.N., “Call admission control and routing in
integrated service networks using neuro-dynamic programming,” IEEE J. Selected
Areas in Comm., v. 18, n. 2, pp. 197–208, Feb. 2000.

[8] McKeown, N., Anantharam, V., Walrand, J., “Achieving 100% Throughput in an
Input-Queued Switch,” Proc. of IEEE INFOCOM ’96, San Francisco, March 1996.

[9] Park, Y.-K., Lee, G., “NN Based ATM Scheduling with Queue Length Based Priority
Scheme,” IEEE J. Selected Areas in Comm., v. 15, n. 2 pp. 261–270, Feb. 1997.

[10] Pattavina, A., Switching Theory: Architecture and Performance in Broadband ATM
Networks, John Wiley and Sons, New York, 1998.

[11] Singh, S.P., Bertsekas, D.P., “Reinforcement learning for dynamic channel allocation
in cellular telephone systems,” in Advances in NIPS 9, ed. Mozer, M., et al., MIT
Press, 1997. pp. 974–980.

[12] Sutton, R.S., Barto, A.G., Reinforcement Learning: an Introduction, MIT Press,
1998.

[13] Tarjan, R.E., Data Structures and Network Algorithms, Soc. for Industrial and Ap-
plied Mathematics, Philidelphia, 1983.

