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Abstract 

In contrast to standard statistical learning theory which studies 
uniform bounds on the expected error we present a framework that 
exploits the specific learning algorithm used. Motivated by the 
luckiness framework [8] we are also able to exploit the serendipity 
of the training sample. The main difference to previous approaches 
lies in the complexity measure; rather than covering all hypothe
ses in a given hypothesis space it is only necessary to cover the 
functions which could have been learned using the fixed learning 
algorithm. We show how the resulting framework relates to the 
VC, luckiness and compression frameworks. Finally, we present an 
application of this framework to the maximum margin algorithm 
for linear classifiers which results in a bound that exploits both the 
margin and the distribution of the data in feature space. 

1 Introduction 

Statistical learning theory is mainly concerned with the study of uniform bounds 
on the expected error of hypotheses from a given hypothesis space [9, 1]. Such 
bounds have the appealing feature that they provide performance guarantees for 
classifiers found by any learning algorithm. However, it has been observed that 
these bounds tend to be overly pessimistic. One explanation is that only in the 
case of learning algorithms which minimise the training error it has been proven 
that uniformity of the bounds is equivalent to studying the learning algorithm's 
generalisation performance directly. 

In this paper we present a theoretical framework which aims at directly studying the 
generalisation error of a learning algorithm rather than taking the detour via the 
uniform convergence of training errors to expected errors in a given hypothesis space. 
In addition, our new model of learning allows the exploitation of the fact that we 
serendipitously observe a training sample which is easy to learn by a given learning 
algorithm. In that sense, our framework is a descendant of the luckiness framework 
of Shawe-Taylor et al. [8]. In the present case, the luckiness is a function of a given 
learning algorithm and a given training sample and characterises the diversity of 
the algorithms solutions. The notion of luckiness allows us to study given learning 
algorithms at many different perspectives. For example, the maximum margin 
algorithm [9] can either been studied via the number of dimensions in feature space, 



the margin of the classifier learned or the sparsity of the resulting classifier. Our 
main results are two generalisation error bounds for learning algorithms: one for 
the zero training error scenario and one agnostic bound (Section 2). We shall 
demonstrate the usefulness of our new framework by studying its relation to the 
VC framework, the original luckiness framework and the compression framework of 
Littlestone and Warmuth [6] (Section 3). Finally, we present an application of the 
new framework to the maximum margin algorithm for linear classifiers (Section 4). 
The detailed proofs of our main results can be found in [5]. 

We denote vectors using bold face, e.g. x = (Xl, ... ,xm ) and the length of this vector 
by lxi, i.e. Ixl = m. In order to unburden notation we use the shorthand notation 
Z[i:jJ := (Zi,"" Zj) for i :::; j. Random variables are typeset in sans-serif font. The 
symbols Px, Ex [f (X)] and IT denote a probability measure over X, the expectation of 
f (.) over the random draw of its argument X and the indicator function, respectively. 
The shorthand notation Z(oo) := U;;'=l zm denotes the union of all m- fold Cartesian 
products of the set Z. For any mEN we define 1m C {I, ... , m } m as the set of all 
permutations of the numbers 1, ... ,m, 

1m := {(il , ... ,im) E {I , ... ,m}m I'v'j f:- k: ij f:- id . 
Given a 2m- vector i E hm and a sample z E z2m we define Wi : {I, ... , 2m} -+ 
{I, ... , 2m} by Wi (j) := ij and IIdz) by IIi (z) := (Z7ri(l), ... , Z7ri(2m))' 

2 Algorithmic Luckiness 

Suppose we are given a training sample z = (x, y) E (X x y)m = zm of size 
mEN independently drawn (iid) from some unknown but fixed distribution PXy = 
Pz together with a learning algorithm A : Z( 00) -+ yX . For a predefined loss 
l : y x y -+ [0,1] we would like to investigate the generalisation error Gl [A, z] := 
Rl [A (z)] - infhEYx Rl [h] of the algorithm where the expected error Rl [h] of his 
defined by 

Rl [h] := Exy [l (h (X) ,Y)] . 
Since infhEYx Rl [h] (which is also known as the Bayes error) is independent of A 
it suffices to bound Rl [A (z)]. Although we know that for any fixed hypothesis h 
the training error 

~ 1 
Rdh,z]:=~ L l(h(xi),Yi) 

(X i ,Yi) Ez 

is with high probability (over the random draw of the training sample z E Z(oo)) 

close to Rl [h], this might no longer be true for the random hypothesis A (z). Hence 
we would like to state that with only small probability (at most 8) , the expected 
error Rl [A (z)] is larger than the training error HI [A (z), z] plus some sample and 
algorithm dependent complexity c (A, z, 8), 

Pzm (Rl [A (Z)] > HI [A (Z), Z] + c (A, Z,8)) < 8. (1) 

In order to derive such a bound we utilise a modified version of the basic lemma of 
Vapnik and Chervonenkis [10]. 
Lemma 1. For all loss functions l : y x y -+ [0,1], all probability measures Pz, all 
algorithms A and all measurable formulas Y : zm -+ {true, false}, if mc2 > 2 then 

Pzm (( RdA (Z)] > HdA (Z) , Z] + c) /\ Y (Z)) < 

2PZ2m ((HI [A (Z[l:m]) ,Z[(m+l):2mJJ > HI [A (Z[l:mJ) ,Z[l:mJJ + ~) /\ Y (Z[l:m])) . 
, .I 

V 

J(Z) 



Proof (Sketch). The probability on the r.h.s. is lower bounded by the proba
bility of the conjunction of event on the l.h.s. and Q (z) = Rl [A (Z[l:mj)] -

Rl [A (Z[l:mj) ,Z(m+1):2m] < ~. Note that this probability is over z E z2m. If 
we now condition on the first m examples, A (Z[l:mj) is fixed and therefore by an 
application of Hoeffding's inequality (see, e.g. [1]) and since m€2 > 2 the additional 
event Q has probability of at least ~ over the random draw of (Zm+1, ... , Z2m). 0 

Use of Lemma 1 - which is similar to the approach of classical VC analysis -
reduces the original problem (1) to the problem of studying the deviation of the 
training errors on the first and second half of a double sample z E z2m of size 
2m. It is of utmost importance that the hypothesis A (Z[l:mj) is always learned 
from the first m examples. Now, in order to fully exploit our assumptions of the 
mutual independence of the double sample Z E z2m we use a technique known 
as symmetrisation by permutation: since PZ2~ is a product measure, it has the 
property that PZ2»> (J (Z)) = PZ2~ (J (ITi (Z))) for any i E hm. Hence, it suffices 
to bound the probability of permutations Jri such that J (ITi (z)) is true for a given 
and fixed double sample z. As a consequence thereof, we only need to count the 
number of different hypotheses that can be learned by A from the first m examples 
when permuting the double sample. 

Definition 1 (Algorithmic luckiness). Any function L that maps an algorithm 
A : Z(oo) -+ yX and a training sample z E Z(oo) to a real value is called an algorith
mic luckiness. For all mEN, for any z E z2m , the lucky set HA (L , z) ~ yX is the 
set of all hypotheses that are learned from the first m examples (Z7ri(1),···, Z7ri(m)) 
when permuting the whole sample z whilst not decreasing the luckiness, i.e. 

(2) 

where 

Given a fixed loss function 1 : y x y -+ [0,1] the induced loss function set 
£1 (HA (L,z)) is defined by 

£1 (HA (L,z)) := {(x,y) r-+ 1 (h(x) ,y) I h E HA (L,z)} . 

For any luckiness function L and any learning algorithm A , the complexity of the 
double sample z is the minimal number N1 (T, £1 (HA (L, z)) ,z) of hypotheses h E 
yX needed to cover £1 (HA (L , z)) at some predefined scale T, i.e. for any hypothesis 
hE HA (L, z) there exists a h E yX such that 

(4) 

To see this note that whenever J (ITi (z)) is true (over the random draw of permu
tations) then there exists a function h which has a difference in the training errors 
on the double sample of at least ~ + 2T. By an application of the union bound we 
see that the number N 1 (T, £1 (HA (L , z)) , z) is of central importance. Hence, if we 
are able to bound this number over the random draw of the double sample z only 
using the luckiness on the first m examples we can use this bound in place of the 
worst case complexity SUPzEZ2~ N1 (T, £1 (HA (L , z)) ,z) as usually done in the VC 
framework (see [9]). 



Definition 2 (w- smallness of L). Given an algorithm A : Z ( 00) -+ yX and a loss 
l : y x y -+ [a, 1] the algorithmic luckiness function Lis w- small at scale T E jR+ if 
for all mEN, all J E (a , 1] and all Pz 

PZ2~ (Nl (T, £"1 (1iA (L, Z)), Z) > w (L (A, Z[l:ml) ,l, m, J,T)) < J. 
, " v 

S(Z) 

Note that if the range of l is {a, I} then N 1 (2~ ' £"1 (1iA (L, z)) , z) equals the num
ber of dichotomies on z incurred by £"1 (1iA (L ,z)). 

Theorem 1 (Algorithmic luckiness bounds). Suppose we have a learning 
algorithm A : Z( oo ) -+ yX and an algorithmic luckiness L that is w-small at 
scale T for a loss function l : y X Y -+ [a, 1]. For any probability measure Pz, 
any dEN and any J E (a , 1], with probability at least 1 - J over the random 
draw of the training sample z E zm of size m, if w (L (A, z) ,l, m, J/4, T) :::; 2d 
then 

Rz[A (z)] :::; Rz[A (z), z] + ! (d + 10g2 (~) ) + 4T. (5) 

Furthermore, under the above conditions if the algorithmic luckiness L is w
small at scale 2~ for a binary loss function l (".) E {a, I} and Rl [A (z), z] = a 
then 

(6) 

Proof (Compressed Sketch). We will only sketch the proof of equation (5) ; the proof 
of (6) is similar and can be found in [5]. First , we apply Lemma 1 with Y (z) == 
w (L (A,z) ,l,m,J/4,T) :::; 2d. We now exploit the fact that 

PZ2~ (J (Z)) :Z2~ (J (Z) 1\ S (Z) ), +PZ2~ (J (Z) 1\ ...,S (Z)) 
v 

:::: PZ2~ (S(Z)) 

J 
< 4 + PZ2~ (J (Z) I\...,S (Z)) , 

which follows from Definition 2. Following the above-mentioned argument it suf
fices to bound the probability of a random permutation III (z) that J (III (z)) 1\ 
...,S (III (z)) is true for a fixed double sample z. Noticing that Y (z) 1\ ...,S (z) => 
Nl (T,£"l (1iA (L , z)) ,z) :::; 2d we see that we only consider swappings Jri for which 
Nl (T,£"l (1iA (L,IIi (z))) ,IIi (z)) :::; 2d. Thus let us consider such a cover of 
size not more than 2. By (4) we know that whenever J (IIi (z)) 1\ ...,S (IIi (z)) 
is true for a swapping i then there exists a hypothesis h E yX in the cover 

such that Rl [h, (III (z)) [(m+1) :2ml] - Rl [h, (III (z)) [l :ml] > ~ + 2T. Using the 
union bound and Hoeffding's inequality for a particular choice of PI shows that 
PI (J (III (z)) 1\ ...,S (III (z))) :::; £ which finalises the proof. D 

A closer look at (5) and (6) reveals that the essential difference to uniform bounds 
on the expected error is within the definition of the covering number: rather than 
covering all hypotheses h in a given hypothesis space 1i ~ yX for a given double 
sample it suffices to cover all hypotheses that can be learned by a given learning 
algorithm from the first half when permuting the double sample. Note that the 
usage of permutations in the definition of (2) is not only a technical matter; it 
fully exploits all the assumptions made for the training sample, namely the training 
sample is drawn iid. 



3 Relationship to Other Learning Frameworks 

In this section we present the relationship of algorithmic luckiness to other learning 
frameworks (see [9, 8, 6] for further details of these frameworks). 

VC Framework If we consider a binary loss function l (".) E {a, I} and assume 
that the algorithm A selects functions from a given hypothesis space H ~ yX then 
L (A, z) = - VCDim (H) is a w- smallluckiness function where 

( 1) (2em) -Lo 
w Lo,l,m,8, 2m :S -Lo . (7) 

This can easily be seen by noticing that the latter term is an upper bound on 
maxzEZ2", I{ (l (h (Xl) ,yI) , ... ,l (h (X2m), Y2m)) : h E H}I (see also [9]). Note that 
this luckiness function neither exploits the particular training sample observed nor 
the learning algorithm used. 

Luckiness Framework Firstly, the luckiness framework of Shawe-Taylor et al. [8] 
only considered binary loss functions l and the zero training error case. In this work, 
the luckiness £ is a function of hypothesis and training samples and is called w
small if the probability over the random draw of a 2m sample z that there exists a 
hypothesis h with w(£(h, (Zl, ... ,zm)), 8) < J'--h (2;" {(X , y) t--+ l (g (x) ,y) 1£ (g , z) ::::: 
£ (h, Z)}, z), is smaller than 8. Although similar in spirit, the classical luckiness 
framework does not allow exploitation of the learning algorithm used to the same 
extent as our new luckiness. In fact, in this framework not only the covering number 
must be estimable but also the variation of the luckiness £ itself. These differences 
make it very difficult to formally relate the two frameworks. 

Compression Framework In the compression framework of Littlestone and 
Warmuth [6] one considers learning algorithms A which are compression schemes, 
i.e. A (z) = :R (e (z)) where e (z) selects a subsample z ~ z and :R : Z(oo) -+ yX 
is a permutation invariant reconstruction function. For this class of learning algo
rithms, the luckiness L(A,z) = -le(z)1 is w- small where w is given by (7). In 
order to see this we note that (3) ensures that we only consider permutations 7ri 

where e (IIi (z)) :S Ie (z)l, i.e. we use not more than -L training examples from 
z E z2m. As there are exactly e;;) distinct choices of d training examples from 
2m examples the result follows by application of Sauer 's lemma [9]. Disregarding 
constants, Theorem 1 gives exactly the same bound as in [6]. 

4 A New Margin Bound For Support Vector Machines 

In this section we study the maximum margin algorithm for linear classifiers, i.e. A : 
Z(oo) -+ Hcp where Hcp := {x t--+ (¢ (x), w) I wE }C} and ¢ : X -+ }C ~ £~ is known 
as the feature mapping. Let us assume that l (h (x) ,y) = lO-l (h (x) ,y) := lIyh(x)::;o, 

Classical VC generalisation error bounds exploit the fact that VCDim (Hcp) = nand 
(7). In the luckiness framework of Shawe-Taylor et al. [8] it has been shown that we 
can use fat1i.p h'z (w)) :S h'z (W))-2 (at the price of an extra 10g2 (32m) factor) in 
place of VCDim (Hcp) where "(z (w) = min(xi,Yi)Ez Yi (¢ (Xi) , w) / Ilwll is known as 
the margin. Now, the maximum margin algorithm finds the weight vector WMM that 
maximises "(z (w). It is known that WMM can be written as a linear combination of 
the ¢ (Xi). For notational convenience, we shall assume that A: Z(oo) -+ 1R(00) maps 



to the expansion coefficients 0: such that Ilwall = 1 where Wa := �2�: �1�~ �1� (XicfJ(Xi). 
Our new margin bound follows from the following theorem together with (6). 

Theorem 2. Let fi (x) be the smallest 10 > 0 such that {cfJ (Xl) , ... , cfJ (Xm) } 
can be covered by at most i balls of radius less than or equal f. Let f z (w) be 
d fi d b f ( ) .- . Yi (4)(X i),W) D th l l d e ne y z W . - mm(Xi,Yi)Ez 114>(Xi) II.llwll. ror e zero-one oss 0-1 an 
the maximum margin algorithm A , the luckiness function 

L(A ) =_ . {. ",,-T .> (fi (X)2:7=1 IA(Z)jl) 2} 
,Z mIn �~� E 1'1 �~� _ () , 

fz W A(z) 
(8) 

is w-small at scale 112m w.r.t. the function 

( 1) (2em)-2LO 
w Lo,l,m,8, 2m = -Lo (9) 

Proof (Sketch). First we note that by a slight refinement of a theorem of Makovoz 
[7] we know that for any Z E zm there exists a weight vector w = 2::1 iiicfJ (Xi) 
such that 

(10) 

and a E ]Rm has no more than - L (A, z) non-zero components. Although only 
WA(z) is of unit length, one can show that (10) implies that 

(WA(z), wi IIwll) �~� )1- f; (WA(z»). 

Using equation (10) of [4] this implies that w correctly classifies Z E zm. Consider 
a fixed double sample Z E z2m and let ko := L (A, (Zl , ... , zm)). By virtue of (3) 
and the aforementioned argument we only need to consider permutations tri such 
that there exists a weight vector w = 2:;:1 iijcfJ (Xj) with no more than ko non-zero 

iij. As there are exactly (2;;) distinct choices of dE {I, ... , ko} training examples 
from the 2m examples Z there are no more than (2emlko)kO different subsamples 
to be used in w. For each particular subsample z �~� Z the weight vector w is a 
member of the class of linear classifiers in a ko (or less) dimensional space. Thus, 
from (7) it follows that for the given subsample z there are no more (2emlko)kO 
different dichotomies induced on the double sample Z E z2m. As this holds for any 
double sample, the theorem is proven. D 

There are several interesting features about this margin bound. Firstly, observe 
that 2:;:1 IA (Z)j I is a measure of sparsity of the solution found by the maximum 
margin algorithm which, in the present case, is combined with margin. Note that 
for normalised data, i.e. IlcfJ Oil = constant, the two notion of margins coincide, 
i.e. f z (w) = I Z (w). Secondly, the quantity fi (x) can be considered as a measure 
of the distribution of the mapped data points in feature space. Note that for all 
i E N, fi (x) :S 101 (x) :S maxjE{l , ... ,m} IlcfJ (xj)ll. Supposing that the two class
conditional probabilities PX1Y=y are highly clustered, 102 (x) will be very small. An 
extension of this reasoning is useful in the multi-class case; binary maximum margin 
classifiers are often used to solve multi-class problems [9]. There appears to be also 
a close relationship of fi (x) with the notion of kernel ali gnment recently introduced 
in [3]. Finally, one can use standard entropy number techniques to bound fi (x) in 
terms of eigenvalues of the inner product matrix or its centred variants. It is worth 
mentioning that although our aim was to study the maximum margin algorithm the 




