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Animal data on delayed-reward conditioning experiments shows a 
striking property - the data for different time intervals collapses 
into a single curve when the data is scaled by the time interval. 
This is called the scalar property of interval timing. Here a simple 
model of a neural clock is presented and shown to give rise to the 
scalar property. The model is an accumulator consisting of noisy, 
linear spiking neurons. It is analytically tractable and contains 
only three parameters. When coupled with reinforcement learning 
it simulates peak procedure experiments, producing both the scalar 
property and the pattern of single trial covariances. 

1 Introduction 

An aspect of delayed-reward reinforcement learning problem which has a long his
tory of study in animal experiments, but has been overlooked by theorists, is the 
learning of the expected time to the reward. In a number of animal experiments, 
animals need to wait a given time interval after a stimulus before performing an 
action in order to receive the reward. In order to be able to do this , the animal 
requires an internal clock or mechanism for perceiving time intervals, as well as a 
learning system which can tackle more familiar aspects of delayed reward reinforce
ment learning problem. In this paper it is shown that a simple connectionist model 
of an accumulator used to measure time duration, coupled to a standard TD('\) 
reinforcement learning rule reproduces the most prominent features of the animal 
experiments. 

The reason it might be desirable for a learner to learn the expected time to receive 
a reward is that it allows it to perform the action for an appropriate length of 
time. An example described by Grossberg and Merrill [4] and modeled in animal 
experiments by Gibbon and Church [3] is foraging. An animal which had no sense of 
the typical time to find food might leave too often, thereby spending an inordinate 
amount of time flying between patches. Alternatively it could remain in a depleted 
patch and starve. The ability to learn times to rewards is an important aspect of 



intelligent behavior more generally. 

1.1 Peak Procedure Experiments 

A typical type of experiment which investigates how animals learn the time between 
stimulus and reward is the peak procedure. In this, the animal is trained to respond 
after a given time interval tr has elapsed. Some stimulus (e.g. a light) is presented 
which stays on during the trial. The animal is able to respond at any time. The 
animal receives a reward for the first response after the length of time tr . The trial 
ends when the animal receives the reward. 

On some trials, however, no reward is given even when the animal responds appro
priately. This is to see when the animal would stop responding. What happens 
in non-reward trials is that the animal typically will start responding at a certain 
time, will respond for a period, and then stop responding. Responses averaged over 
many trials, however, give a smooth curve. The highest response is at the time 
interval tr , and there is variation around this. The inaccuracy in the response (as 
measured by the standard deviation in the average response curves for non-reward 
trials) is also proportional to the time interval. In other words, the ratio of the 
standard deviation to the mean response time (the coefficient of variation) is a 
constant independent of the time interval. 

A more striking property of the timing curves is scalar property, of which the above 
are two consequences. When the average response rate for non-reward trials is 
multiplied by the time interval and plotted against the relative time (time divided 
by the time interval) the data from different time intervals collapse onto one curve. 

This strong form of the scalar property can be expressed mathematically as follows. 
Let T be the actual time since the start of the trial and T be subjective time. 
Subjective time is the time duration which the animal perceives to have occurred, 
(or at least appears to perceive judging from its behavior). The experiments show 
that T varies for a given T. This variation can be expressed as a conditional 
probability, the probability of acting as though the time is T given that the actual 
time is T, which is written P(TIT). The fact that the data collapses implies this 
probability depends on T and T in a special way, 

(1) 

Here Pinv is the function which describes the shape of the scaled curves. Thus, time 
acts as a scale factor. This is a strong and striking result. This has been seen in 
many species, including rats, pigeons, turtles; humans will show similar results if the 
time intervals are short or if they are prevented from counting through distracting 
tasks. For reviews of interval timing phenomena, see [5] and [3] . 

A key question which remains unanswered is: what is the origin of the scalar prop
erty. Since the scalar property is ubiquitous, it may be revealing something fun
damental about the nature of an internal clock or time perception system. This 
is especially true if there are only a few known mechanisms which generate this 
phenomenon. It is well known that any model based on the accumulation of in
dependent errors, such as a clock with a variable pulse-rate, does not produce the 
scalar property. In such a model it would be the ratio of the variance to the mean 
response time which would be independent of the time interval (a consequence of 
the law of large numbers). In section 2, a simple stochastic process will be presented 
which gives rise to scalar timing. In section 3 simulations of the model on the peak 



procedure are presented. The model reproduces experimental results on the mean 
responses and the covariation between responses on non-reward trials. 

2 The model 

2.1 An accumulator network of spiking neurons 

Here it is shown that a simple connectionist model of an accumulator can give rise 
to the strong scalar property. The network consists of noisy, linear, spiking neurons 
which are connected in a random, spatially homogeneous way. The network encodes 
time as the total activity in the network which grows during the measured time 
interval. Psychological aspects of the model will be presented elsewhere [8] 

The network consists of N identical neurons. The connectivity between neurons 
is random and defined by a connection matrix Cij which is random and sparse. 
The connection strength is the same between all connected neurons. An important 
parameter is the fan-out of the ith neuron Ci ; its average across the network is 
denoted C. Time is in discrete units of size T, the time required for a spike produced 
by a neuron to invoke a spike in a connected neuron. There is no refractory period. 

The neurons are linear - the expected number of spikes produced by a neuron is 
"( times the number of pre-synaptic spikes. Let ai(t) denote the number of spikes 
produced by neuron i at time t. This obeys 

hi(t) 

ai(t + T) = L Va + Ii(t), (2) 
a=l 

where hi(t) is the number of spikes feeding into neuron i, hi(t) = E j CjiXj(t). Ii(t) 
is the external input at i , and V is a random variable which determines whether a 
pre-synaptic spike invokes one in a connected neuron. The mean of v is "( and the 
variance is denoted a~. So the spikes behave independently; saturation effects are 
ignored. The total activity of the network is 

N 

n(t) = L ai(t). (3) 
i = l 

At each time-step, the number of spikes will grow due to the fan-out of the neurons. 
At the same time, the number of spikes will shrink due to the fact that a spike 
invokes another spike with a probability less than 1. An essential assumption of 
this work is that these two processes balance each other, C"( = 1. 

Finally, in order for this network to act as an accumulator, it receives statistically 
stationary input during the time interval which is being measured, so I(t) is only 
present during the measured interval and statistically stationary then. 

2.2 Derivation of the strong scalar property 

Here it is shown that the network activity obeys equation (1). Let y be the scaled 
network activity, 

y(t) = n(t)/t. (4) 

The goal here is the derive the probability distribution for y as a function of time, 
P(ylt). In order to do this, we use the cumulant generating function (or character
istic function). For any probability distribution, p(x), the generating function for 



cumulants is, 

G(8) (5) 

(6) 
where n is the domain of p(x), "'i is the ith cumulant of p(x), and 8 is just a dummy 
variable. Taking the nth derivative of G(8) with respect to 8 and setting 8 to 0 gives 
"'i. Cumulants are like moments, see [1] for some definitions and properties. 

We will derive a recursion relation for the cumulant generating function for y(t), 
denoted Gy (8; t). Let Gy (8) denote the generating function for the distribution of v 

and G [(8) denote the generating functions for the distribution of inputs I(t). These 
latter two are assumed to be stationary, hence there is no time-dependence. From 
equation 2 it follows that, 

Gy(8;t+T) = G[C:T)+~LGy[tCiGYC:T);t]. (7) 
• 

In deriving the above, it was assumed that the activity at each node is statistically 
the same, and that the fan-out at i is uncorrelated with the activity at i (this 
requires a sufficiently sparsely connectivity, i.e. no tight loops). 

Differentiating the last equation n times with respect to 8 and setting 8 to zero 
produces a set recursion relations for the cumulants of y, denoted "'n. It is necessary 
to take terms only up to first order in lit to find the fixed point distribution. The 
recursion relations to this order are 

( T) m[ 1-- "'l(t)+--
t t+ T 

(8) 

( T) 1n(n-1) 2 
1 - n- "'n(t) + - C(J"y"'n-l(t) 

t t 2 

+ 0 C~) ;n > 1. (9) 

The above depends upon the mean total input activity m[ == G~(O) the average 
fan-out C, and the variance in the noise v, (J"~ == G~(O). In general it would depend 
upon the fan-out times the mean of the noise v, but that is 1 by assumption. Higher 
order statistics in C and v only contribute to terms which are higher order in lit. 

The above equations converge to a fixed point, which shows that n(t)lt has a time
independent distribution for large t. The fixed point is found to be 

~ 8n 2m[ ( (J"~) Gy (8,00) = ~ ,"'n(OO) = -2 log 1- 28 . 
n=O n. (J" T 

Equation 10 is the generating function for a gamma distribution, 

R (I b) = exp( -xlb)xa - 1 

r x a, bar(a) 

with 
2m[ 

a = C 2; (J"y 
Corrections to the fixed point are O(l/t). 

b = C(J"~. 
2T 

(10) 

(11) 

(12) 

What this shows is that for large t, the distribution of neural activity, n is scalar, 

P(nlt) = ~ Pr (~ la, b) ; (13) 

with a and b defined above. 



2.3 Reinforcement learning of time intervals 

The above model represents a way for a simple connectionist system to measure a 
time interval. In order to model behavior, the system must learn to association the 
external stimulus and the clock with the response and the reward. To do this, some 
additional components are needed. 

The ith stimulus is represented by a signal Si. The output of the accumulator trig
gers a set of clock nodes which convert the quantity or activity encoding of time 
used by the accumulator into a "spatial code" in which particular nodes represent 
different network activities. This was done because it is difficult to use the accu
mulator activity directly, as this takes a wide range of values. Each clock node 
responds to a particular accumulator activity. The output of the ith clock node 
at time t is denoted Xi(t) ; it is one if the activity is i, zero otherwise. It would 
be more reasonable to use a coarse coding, but this fine-grained encoding is partic
ularly simple. The components of the learning model are shown schematically in 
figure 1. 

Vj(t) 

Stimulus 
si -----I 

Figure 1: The learning model. The accumulator feeds into a bank of clock nodes , Xi , 
which are tuned to accumulator activities . The response Vj is triggered by simulta
neous presence of both the stimulus Si and the appropriate clock node. Solid lines 
denote weights which are fixed; dashed lines show weights which learn according to 
the TD(A) learning rule. 

The stimulus and the clock nodes feed into response nodes. The output of the jth 
response node, Vj(t) is given by 

(14) 

Here () is a threshold, Aij is the association between the stimulus and the response, 
and Wij is the association between a clock node and the response. Both the stimulus 
and the appropriate clock node must be present in order for there to be a reasonable 
probability of a response. The response probability is Vj (t) , unless that is negative, 
in which case there is no response, or is greater than 1, in which case there is 
definitely a response. 

Both Aij and the w's learn via a TD-A learning rule. TD-A is an important learning 



rule for modeling associative conditioning; it has been used to model aspects of 
classical conditioning including Pavlovian conditioning and blocking. For example, 
a model which is very effective at modeling Pavlovian eye-blink experiments and 
other classical conditioning results has been proposed by Moore et. al. [6] building 
on the model of Sutton, Barto, and Desmond (see description in [7]). This model 
represents time using a tapped delay line; at each time-step, a different node in the 
delay line is activated. Time acts as one of the conditioned stimuli. The conditioned 
stimsing temporal difference (TD) reinforcement learning is associated with the 
response through the unconditioned stimulus. These authors did not attempt to 
model the scalar property, and in their model time is represented accurately by 
the system. The model presented here is similar to these models. The clock nodes 
play the role of the tapped delay-line nodes in that model. However, here they 
are stimulated by the accumulator rather than each other, and they will follow a 
stochastic trajectory due to the fluctuating nature of the accumulator 

The learning rule for Wij couples to an "eligibility trace" for the clock nodes Xi(t) 
which takes time to build up and decays after the node is turned off. They obey 
the following equations, 

(15) 

The standard TD-A learning parameters, "( and A are used, see [9]. The learning 
equations are 

t:.Wij 
t:.Aij 

8(t) 

a8(t + T)Xi(t), 
a8(t + T)Si' 
R(t) + "( Vj(t) - Vj(t - T). 

(16) 
(17) 
(18) 

Here a is a learning rate, 8 is the temporal difference component, R(t) is the re
inforcement. The outputs Vj at both times use the current value of the weights. 
The threshold is set to a constant value (-1 in the simulations). It would make no 
difference if a eligibility trace were used for the stimulus Si, because that was held 
on during the learning. 

3 Simulations 

The model has been used to simulate peak procedure. In the simulations, the model 
is forced to respond for the first set of trials (50 trials in the simulations); otherwise 
the model would never respond. This could represent shaping in real experiments. 
After that the model learns using reward trials for an additional number of trials 
(150 trials in these simulations). The system is then run for 1000 trials, every 
10th trial is a non-reward trial; the system continues to learn during these trials. 
Figure 2 shows average over non-reward trials for different time intervals. The scalar 
property clearly holds. 

Gibbon and Church [3] have argued that the covariation between trials is a useful 
diagnostic to distinguish models of scalar timing. The methodology which they 
proposed is to fit the results of single non-reward trials from peak procedure exper
iments to a break-run-break pattern of response The animal is assumed to respond 
at a low rate until a start time is reached. The animal then responds at a high rate 
until a stop time is reached, whence it returns to the low response rate. The covari
ation between the start and stop times between trials is measured and compared to 
those predicted by theory. 

The question Gibbon and Church asked was, how does the start and stop time co
vary across trials. For example, if the animal starts responding early, does it stop 
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Figure 2: Left) Average response of the spatially encoded network for non-reward 
trials. The accumulator parameters are: mI = 10, Cu2 = 1 (Poisson limit); learning 
parameters are "( = 0.75, A = 1, learning rate 0: is 0.5. Right) Relative time plotted 
against response rate times time interval for reinforcement times of 40T, 80T, 160T, 
240T, and 320T. All experiments are averages over 100 non-reward trials, which 
were every 10 trial in 1000 learning trials. 

responding early, as though it has a shifted estimate of the time interval? Or does 
it stop responding late, as though it has a more liberal view about what constitutes 
the particular interval. The covariance between start and stop parameters addresses 
this question. 

Comparable experiments can be carried out on the model proposed here. The 
procedure used is described in [2]. Figure 3 shows a comparison with data from 
reference [2] with simulations. The pattern of covariation found in the simulations 
is qualitatively similar to that of the animal data. The interesting quantity is the 
correlation between the start time and the spread (difference between stop and start 
times). This is negative in both. 

0.5 0.5 I~ I~ I 
-0.5 '---~-____:-____:-___:_-___:_-___:_----' -0.5 '----~____:,----____:-___:_-___:_-___:_----' 

Figure 3: Left) Covariances across individual trials in experiments on rats. Data is 
taken from Table 2 of reference [2] averaged over the four conditions. The covari
ances are shown in the following order: 1. start-stop, 2. start-spread, 3. spread
middle, 4. start-middle, 5. stop-spread, 6. stop-middle. The black, gray, and white 
bars are for times of reinforcement tr of 15,30, and 60 seconds respectively. Right) 
Covariances across individual trials simulated by the model. The reinforcement 
times are 40T, 80T, and 160T. The covariances are given in the same order as in left 
figure. 



4 Conclusion 

Previous models of interval timing fail to explain its most striking feature - the 
collapse of the data when scaled by the time interval. We have presented a sim
ple model of an accumulator clock based on spiking, noisy, linear neurons which 
produces this effect. It is a simple model, analytically tractable, based on a driven 
branching process. The parameters are: T - the time for a spike on one neuron 
to excite spikes on connected neurons , mI - the average number of spikes excited 
externally at each short time interval T, and the variance of the spike transmission 
process, which in this model is (}"~. A weakness of this model is that it requires 
fine-tuning of a pair of parameters, so that the expected number of spikes grows in 
with external excitation only. 

Once a scalar clock is produced, simple reinforcement learning can be used to asso
ciate the clock signal with appropriate responses . A set of intermediate clock nodes 
was used to encode time. TD-'\ reinforcement learning between the intermediate 
nodes at reinforcement and an eligibility trace simulates peak procedure and the 
individual trial covariances. 
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