Sparse Kernel Principal Component Analysis

Part of Advances in Neural Information Processing Systems 13 (NIPS 2000)

Bibtex Metadata Paper

Authors

Michael Tipping

Abstract

'Kernel' principal component analysis (PCA) is an elegant non(cid:173) linear generalisation of the popular linear data analysis method, where a kernel function implicitly defines a nonlinear transforma(cid:173) tion into a feature space wherein standard PCA is performed. Un(cid:173) fortunately, the technique is not 'sparse', since the components thus obtained are expressed in terms of kernels associated with ev(cid:173) ery training vector. This paper shows that by approximating the covariance matrix in feature space by a reduced number of exam(cid:173) ple vectors, using a maximum-likelihood approach, we may obtain a highly sparse form of kernel PCA without loss of effectiveness.