Gaussianization

Part of Advances in Neural Information Processing Systems 13 (NIPS 2000)

Bibtex Metadata Paper

Authors

Scott Chen, Ramesh Gopinath

Abstract

High dimensional data modeling is difficult mainly because the so-called "curse of dimensionality". We propose a technique called "Gaussianiza(cid:173) tion" for high dimensional density estimation, which alleviates the curse of dimensionality by exploiting the independence structures in the data. Gaussianization is motivated from recent developments in the statistics literature: projection pursuit, independent component analysis and Gaus(cid:173) sian mixture models with semi-tied covariances. We propose an iter(cid:173) ative Gaussianization procedure which converges weakly: at each it(cid:173) eration, the data is first transformed to the least dependent coordinates and then each coordinate is marginally Gaussianized by univariate tech(cid:173) niques. Gaussianization offers density estimation sharper than traditional kernel methods and radial basis function methods. Gaussianization can be viewed as efficient solution of nonlinear independent component anal(cid:173) ysis and high dimensional projection pursuit.