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Condensation, a form of likelihood-weighted particle filtering, has been 
successfully used to infer the shapes of highly constrained "active" con
tours in video sequences. However, when the contours are highly flexible 
(e.g. for tracking fingers of a hand), a computationally burdensome num
ber of particles is needed to successfully approximate the contour distri
bution. We show how the Metropolis algorithm can be used to update a 
particle set representing a distribution over contours at each frame in a 
video sequence. We compare this method to condensation using a video 
sequence that requires highly flexible contours, and show that the new 
algorithm performs dramatically better that the condensation algorithm. 
We discuss the incorporation of this method into the "active contour" 
framework where a shape-subspace is used constrain shape variation. 

1 Introduction 

Tracking objects with flexible shapes in video sequences is currently an important topic in 
the vision community. Methods include curve fitting [9], layered models [1, 2, 3], Bayesian 
reconstruction of 3-D models from video[6], and active contour models [10, 14, 15]. 

Fitting curves to the outlines of objects has been attempted using various methods, includ
ing "Snakes" [8, 9], where an energy function is minimized so as to find the best fit. As 
with other optimization methods, this approach suffers from local maxima. This problem 
is amplified when using real data where edge noise can prevent the fit of the contour to the 
desired object outline. 

In contrast, Blake et at. [10] introduced a probabilistic framework for curve fitting and 
tracking. Instead of proposing one single best fit for the contour, a probability distribution 
over contours is found. The distribution is represented as a particle set where each particle 
represents one contour shape. Inference in these "active contour" models is accomplished 
using particle filtering. 

In the "active contour" method, a probabilistic dynamic system is used to model the dis
tribution over the outline of the object (the contour) yt and the observations Zt at time t. 
Tracking is performed by inference in this model. 

The outline of an object is tracked through successive frames in a video by using a particle 
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Figure 1: (a) Condensation with Gaussian dynamics (result for best a = 2 shown) applied 
to a video sequence. The 200 contours corresponding to 200 particles fail to track the 
complex outline of the hand. The pictures show every 24th frame of a 211-frame sequence. 
(b) Metropolis updates with only 12 particles keep the contours on track. At each step, 4 
iterations of Metropolis updates are applied with a = 3. 

distribution. Each particle Xn represents single contour Y 1 that approximates the outline 
of the object. For any given frame, a set of particles represents the probability distribution 
over positions and shapes of an object. 

In order to find the likelihood of an observation Zt, given a particle X n , lines perpendicular 
to the contour are examined and edges are detected. A variety of distributions can be 
used to model the likelihood of the edge positions along each line. We assume that the 
position of the edge belonging to the object is drawn from a Gaussian with mean position 
at the intersection of the contour and the measurement line Y(Sm) and the positions of the 
other edges are drawn from a Poisson distribution. The observation likelihood for a single 
measurement line Zm can be simplified to [10] 

p(zmlxn) ex: 1 + 1 L exp [_Izm ,j - B~sm)xnI2] (1) 
V21fam lQ j 2aml 

where Zm,j denotes the coordinates of an edge on measurement line m, and B(sm)xn = 
Yn(Sm) is the intersection of the contour and the measurement line (see later). Q = q>.. 

lNotation: We will use Y to refer to a curve, parameterized by x, and yes) for a particular point 
on the curve. x refers to a particle consisting of subspace parameters, or in our case, control points. 
n indexes a particle in a particle set, i indexes a component of a particle (i.e. a single control point), 
m indexes measurement lines and t is used as a frame index 



where q is the probability of not observing the edge, and A is the rate of the Poisson process. 
(J'rnl defines the standard deviation in pixels. A multitude of measurement lines is used 
along the contour, and (assuming independence) the contour likelihood is 

p(Zlxn) = IIP(ZrnIXn) (2) 
M 

where m E M is the set of measurement lines. 

As mentioned, in the condensation algorithm, a particle set is used to represent the distri
bution of contours. Starting from an initial distribution, a new distribution for a successive 
frame is produced by propagating each particle using the system dynamics P(xtlxt-t} . 
Now the observation likelihood P(Ztlxt) is calculated for each particle, and the particle 
set is resampled with replacement, using the likelihoods as weights . The resulting set of 
particles approximates the posterior distribution at time t and is then propagated to the next 
frame. 

Figure l(a) shows the results of using condensation with 200 particles. As can be seen, the 
result is poor. Intuitively, the reason condensation fails is that it is highly unlikely to draw 
a particle that has raised control points over the four fingers , while keeping the remainder 
fixed. Figure 1 (b) shows the result of using Metropolis updates and 12 particles (equivalent 
amount of computation). 

2 Keeping contours on track using Metropolis updates 

To reduce the dimensionality of the inference, a subspace is often used. For example, a 
fixed shape is only allowed horizontal and vertical translation. Using a subspace reduces 
the size of the required particle set, allowing for successful tracking using standard con
densation. If the object can deform, a subspace that captures the allowed deformations 
may be used [15]. This increases the flexibility of the contour, but at the cost of enlarged 
dimensionality. In order to learn such a subspace, a large amount of training samples are 
used, which are supplied by hand fitting contour shapes to a large number of frames. How
ever, even moderately detailed contours (say, the outline of a hand) will have many control 
points that interact in complex ways, making subspace modeling difficult or impractical. 

2.1 Metropolis sampling 

Metropolis sampling is a popular Markov Chain Monte Carlo method for problems of large 
dimensionality[16, 17]. A new particle is drawn from a proposal density Q(X'; Xt) , where 
in our case, Xt is a particle (i.e. a set of control points) at time t, and x' is a tentative new 
particle produced by perturbing a subset of the control points. 

I 1 [ (x' - Xt)2] Qi(X IXt) = J'<\? exp - 2 2 . 
V 27r(J'2 (J' 

(3) 

We then calculate 

(4) 

where p(Xt IXt-l)p(Zt IXt) is proportional to the posterior probability of observing the con
tour in that position. If a ~ 1 the proposed particle is accepted. If a < 1, it is accepted 
with probability a. Since Q is symmetric, the second factor Q(x'; Xt)/Q(Xt; x') = 1. 

Metropolis sampling can be used in the framework of particle propagation in two ways. It 
can either be used to fit splines around contours of a training set that is used to construct a 
shape subspace, e.g. by PCA, or it can also be used to refine the shapes of the subspace to 
the actual data during tracking. 



2.2 B-splines 

B-splines or basis function splines are parametric curves, defined as follows: 

Y(s) = B(s)C (5) 

where Y (s) is a two dimensional vector consisting of the 2-D coordinates of a point on the 
curve, B(s) is a matrix of polynomial basis functions, and C is a vector of control points. 
In other words, a point along the curve Y (s) is a weighted sum of the values of the basis 
functions B(s) for a particular value of s, where the weights are given by the values of 
C. The basis functions of b-splines have the characteristic that they are non-zero over a 
limited range of s. Thus a particular control point will only affect a portion of the curve. 
For regular b-splines of order 4 (the basis functions are 3rd degree polynomials), a single 
control point will only affect Y (s) over a range of s of length 4. Conversely, for particular 
Sm (m : Sm E SuppartO !(Xi), where i indexes the component of x that has been altered), 
Y(Sm) is affected by at most 4 control points (fewer towards the ends). 

As mentioned before, a detailed contour can have a large number of control points, and thus 
high dimensionality and so it is common to use a subspace. In this case C can be written as 
C = W x + Co where W defines a linear subspace and Co is the template of control points, 
and x represents perturbations from the template in the subspace. 

In this work we examine unconstrained models, where no prior knowledge about the de
formations or dynamics of the object are presumed. In this case W is the identity matrix, 
Co = 0, and x are the actual coordinates of the control points. This allows the contour to 
deform in any way. 

2.3 Metropolis updates in condensation 

The new algorithm consists of two steps: a Metropolis step, followed by a resampling step. 

1. Iterate over control points: 

• For one control point at a time, draw a proposal particle by drawing a new 
control point x~ from a 2-D Gaussian centered at the current control point 
Xt ,i, Eq. (3), and keeping all others unchanged. 

• Calculate the observation likelihood for the new control point, Eq. (2). 
• Calculate a (Eq. 4) and reject or accept the new particle 

2. Resample 

3. Get next image in video 

If the particle distribution at t - 1 reflects P(xt-lIZl, ... , Zt-t}, the Metropolis updates 
will converge to P(XtIZl, ... , Zt) [16]. 

As mentioned above, the affect of altering the position of a control point is to change the 
shape of the contour locally since the basis functions have limited support. Thus, when 
evaluating p(x~lxt-t}p(ZtlxD for a proposed particle, we only need to reexamine mea
surement lines and evaluate p(zm,t Ix~ ,t) for lines in the effected interval and similarly for 
p(x~,t IXn,t-l). This allows for an efficient algorithm implementation. 

The computation eM required to update a single particle using metropolis, compared to 
condensation is eM = o· it . ec where 0 is the order of the b-spline, it is the number 
of iterations, and ec is the number of computations required to update a particle using 
condensation. Thus, in the case offourth order splines such as the ones we use, the increase 
in computation for a single particle is only four for a single iteration, and eight for two 
iterations. However, we have seen that far fewer particles are required. 



Figure 2: The behavior of the algorithm with Metropolis updates is shown at frame 100 
(t = 100) as a function of iterations and u. The columns, show, from left to right, 1,2,4 
and 8 iterations, and the rows, from top to bottom show u = {I, 2, 3, 4}. The rejection 
ratio (i.e. the ratio of rejected proposal particles to the total number of proposed particles) 
is shown as a bar on the right side of each image. 

3 Results 

We tested our algorithm on the video sequence shown in Figure 1. The contour had 56 2-D 
control points i.e a state space of 112 dimensions. Such high dimensionality is required for 
the detailed contours required to properly outline the fingers of the hand. 

The results presented are for relatively noise free data, i.e. free from background clutter. 
This allows us to contrast the performance of using Metropolis updates and standard con
densation, for the scenarios of interest, i.e. the learning of subspace models and contour 
refinement. 

Figure l(b) shows the results for the Metropolis updates for 12 particles, 4 iterations and 
u = 3. The figure shows every 24th frame from frame 1 to frame 211. The outline of the 
splayed fingers is tracked very successfully. 

Figure l(a) shows every 24th frame for the condensation algorithm of equivalent complex
ity, using 200 particles and u = 2. This value of u gave the best results for 200 particles. 
As can be seen, the little finger is tracked moderately well. However the other parts of the 
hand are very poorly tracked. For lower values of u the contour distribution did not track 



the hand, but stayed in roughly the position of the initial contour distribution. For higher 
values of 0', the contour looped around in the general area of the fingers. 

Figure 2 shows the contour distribution for frame 100 and 12 particles, for different num
bers of iterations and values of 0'. When 0' = 1 and 2 the contour distribution does not keep 
up with the deformation. For 0' = 4 the contour is correctly tracked except for the case of a 
single iteration. The rejection ratio (i.e. the ratio of rejected proposal particles to the total 
number of proposed particles) is shown as a bar on the right side of each image. Notice 
that the general trend is that rejection ratio increases as 0' increases, and decreases as the 
number of iterations is increased (due to a smaller 0' at each step). 

Intuitively, it is not surprising that our new algorithm outperforms standard condensation. 
In the case of condensation, Gaussian noise is added to each control point at each time 
step. One particle may be correctly positioned for the little finger and poorly positioned 
for the forefinger, whereas an other particle may be well positioned around the forefinger 
and poorly positioned around the little finger. In order to track the deformation of the hand, 
some particles are required that track both the little finger and the forefinger (and all other 
parts too). In contrast the Metropolis updates are likely to reject particles that are locally 
worse than the current particle, but accept local improvements. 

It should be noted that for lower dimensional problems, the increase in tracking perfor
mance is not as dramatic. E.g. in the case of tracking a rotating head, using a 12 control 
point b-spline, the two algorithms performed comparably. 

4 Future work and conclusion 

We are currently examining the effects of background clutter on the performance of the 
algorithm. We are also investigating other sequences and groupings of control points for 
generating proposal particles, and ways of using subspace models in combination with 
Metropolis updates. 

In this paper we showed how Metropolis updates can be used to keep highly flexible ac
tive contours on track, and an efficient implementation strategy was presented. For high 
dimensional problems which are common for detailed shapes, the new algorithm presented 
produces dramatically better results than standard condensation. 
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