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Abstract 

We show how a wavelet basis may be adapted to best represent 
natural images in terms of sparse coefficients. The wavelet basis, 
which may be either complete or overcomplete, is specified by a 
small number of spatial functions which are repeated across space 
and combined in a recursive fashion so as to be self-similar across 
scale. These functions are adapted to minimize the estimated code 
length under a model that assumes images are composed of a linear 
superposition of sparse, independent components. When adapted 
to natural images, the wavelet bases take on different orientations 
and they evenly tile the orientation domain, in stark contrast to the 
standard, non-oriented wavelet bases used in image compression. 
When the basis set is allowed to be overcomplete, it also yields 
higher coding efficiency than standard wavelet bases. 

1 Introduction 

The general problem we address here is that of learning efficient codes for represent
ing natural images. Our previous work in this area has focussed on learning basis 
functions that represent images in terms of sparse, independent components [1, 2]. 
This is done within the context of a linear generative model for images, in which 
an image I(x,y) is described in terms of a linear superposition of basis functions 
bi(x,y) with amplitudes ai> plus noise v(x,y): 

(1) 



A sparse, factorial prior is imposed upon the coefficients ai, and the basis functions 
are adapted so as to maximize the average log-probability of images under the model 
(which is equivalent to minimizing the model's estimate of the code length of the 
images). When the model is trained on an ensemble of whitened natural images, 
the basis functions converge to a set of spatially localized, oriented, and bandpass 
functions that tile the joint space of position and spatial-frequency in a manner 
similar to a wavelet basis. Similar results have been achieved using other forms of 
independent components analysis [3, 4]. 

One of the disadvantages of this approach, from an image coding perspective, is 
that it may only be applied to small sub-images (e.g., 12 x 12 pixels) extracted 
from a larger image. Thus, if an image were to be coded using this method, it 
would need to be blocked and would thus likely introduce blocking artifacts as the 
result of quantization or sparsification of the coefficients. In addition, the model 
is unable to capture spatial structure in the images that is larger than the image 
block, and scaling up the algorithm to significantly larger blocks is computationally 
intractable. 

The solution to these problems that we propose here is to assume translation- and 
scale-invariance among the basis functions, as in a wavelet pyramid architecture. 
That is, if a basis function is learned at one position and scale, then it is assumed 
to be repeated at all positions (spaced apart by two positions horizontally and 
vertically) and scales (in octave increments) . Thus, the entire set of basis functions 
for tiling a large image may be learned by adapting only a handful of parameters
i.e., the wavelet filters and the scaling function that is used to expand them across 
scale. 

We show here that when a wavelet image model is adapted to natural images to 
yield coefficients that are sparse and as statistically independent as possible, the 
wavelet functions converge to a set of oriented functions, and the scaling function 
converges to a circularly symmetric lowpass filter appropriate for generating self
similarity across scale. Moreover, the resulting coefficients achieve higher coding 
efficiency (higher SNR for a fixed bit-rate) than traditional wavelet bases which are 
typically designed "by hand" according to certain mathematical desiderata [5]. 

2 Wavelet image model 

The wavelet image model is specified by a relatively small number of parameters, 
consisting of a set of wavelet functions 'ljJi(X,y), i = l..M, and scaling function 
¢(x,y). An image is generated by upsampling and convolving the coefficients at 
a given band i with 'ljJi (or with ¢ at the lowest-resolution level of the pyramid), 
followed by successive upsampling and convolution with ¢, depending on their level 
within the pyramid. The wavelet image model for an L level pyramid is specified 
mathematically as 

I(x,y) 

g(x, y, i) 

g(x, y, 0) + v(x, y) 

{ aL-l(x,y) l=L-1 
II (x, y) l < L - 1 

M 

(2) 

(3) 

II(x,y) = [g(x,y,l + 1)t 2] * ¢(x,y) + L: [a~(x,y)t 2J * 'ljJi(X,y) (4) 
i=l 

where the coefficients a are indexed by their position, x, y, band, i, and level of 
resolution l within the pyramid (l = 0 is the highest resolution level) . The symbol 



Figure 1: Wavelet image model. Shown are the coefficients of the first three levels 
of a pyramid (l = 0,1,2), with each level split into a number of different bands 
(i = 1...M). The highest level (l = 3) is not shown and contains only one lowpass 
band. 

t 2 denotes upsampling by two and is defined as 

f(x,y)t2 == { f ( ~, ~) x even & y even 
o otherwise (5) 

The wavelet pyramid model is schematically illustrated in figure 1. Thaditional 
wavelet bases typically utilize three bands (M = 3), in which case the representation 
is critically sampled (same number of coefficients as image pixels). Here, we shall 
also examine the cases of M = 4 and 6, in which the representation is overcomplete 
(more coefficients than image pixels). 

Because the image model is linear, it may be expressed compactly in vector/matrix 
notation as 

I=Ga+v (6) 
where the vector a is the entire list of coefficient values at all positions, bands, and 
levels of the pyramid, and the columns of G are the basis functions corresponding to 
each coefficient, which are parameterized by 'l/J and 41. The probability of generating 
an image I given a specific state of the coefficients a and assuming Gaussian i.i.d. 
noise v is then 

1 ~I G 12 P(Ila,O) = -e- 2 1- a (7) 
ZAN 

where 0 denotes the parameters of the model and includes the wavelet pyramid 
functions 'l/Ji and 41, as well as the noise variance, a~ = 1/ AN. 

The prior probability distribution over the coefficients is assumed to be factorial 
and sparse: 

P(a) (8) 

1 -S(a.) -e ' 
Zs 

(9) 

where S is a non-convex function that shapes P(ai) to have the requisite "sparse" 
form- i.e., peaked at zero with heavy tails, or positive kurtosis. We choose here 
S(x) = t3log(1 + (x/a)2), which corresponds to a Cauchy-like prior over the coeffi
cients (an exact Cauchy distribution would be obtained for t3 = 1).1 

1 A more optimal choice for the prior would be to use a mixture-of-Gaussians distribu
tion, which better captures the sharp peak at zero characteristic of a sparse representation. 
But properly maximizing the posterior with such a prior presents formidable challenges [6) . 



3 Inferring the coefficients 

The coefficients for a particular image are determined by finding the maximum of 
the posterior distribution (MAP estimate) 

a argmax P(all, B) 
a 

= argmax P(lla, B)P(aIB) (10) 
a 

argmln [A;II_GaI2+ ~S(ai)l (11) 

A local minimum may be found via gradient descent, yielding the differential equa
tion 

Ii ex: ANGT e - S(a) 
e = I-Ga. 

(12) 
(13) 

The computations involving G T e and G a in equations 12 and 13 may be performed 
quickly and efficiently using fast algorithms for building pyramids and reconstruct
ing from pyramids [7]. 

4 Learning 

Our goal in adapting the wavelet model to natural images is to find the functions 
'l/Ji and tjJ that minimize the description length £ of images under the model 

£ = -(logP(IIB)) 

P(IIB) = f P(lla, B) P(aIB) da 

(14) 

(15) 

A learning rule for the basis functions may be derived by gradient descent on £: 

8£ 
8Bi 

= AN \ (eT ~~ a) P(aII,O) ) (16) 

Instead of sampling from the full posterior distribution, however, we utilize a simpler 
approximation in which a single sample is taken at the posterior maximum, and so 
we have 

All (AT 8G A) 
UUi ex: e 8Bi a (17) 

where e = I - Ga. The price we pay for this approximation, though, is that the 
basis functions will grow without bound, since the greater their norm, I G k I, the 
smaller each ak will become, thus decreasing the sparseness penalty in (11). This 
trivial solution is avoided by adaptively rescaling the basis functions after each 
learning step so that a target variance on the coefficients is met, as described in an 
earlier paper [1]. 

The update rules for 'l/Ji and tjJ are then derived from (17), and may be expressed in 
terms of the following recursive formulas: 

~'l/Ji(m,n) = F't/J(e(x,y),m,n,O) (18) 

F't/J (1, m, n, l) - L f(2x + m, 2y + n) ai(x, y) + F't/J([f * tjJ]{, 2, m, n, l + 1) 
x,y 



~¢(m, n) = F</l(e(x, y), m, n, 0) (19) 

F</l(f, m,n, l) = L f(2x + m,2y + n) g(x,y,l + 1) + F</l([f *¢l+ 2, m,n, l + 1) 
x ,y 

where * denotes cross-correlation and .j.. 2 denotes downsampling by two. These 
computations may also be performed efficiently using fast algorithms for building 
and reconstructing from pyramids [7]. 

5 Results 

The image model was trained on a set of 10, pre-whitened 512 x 512 natural images 
that were used in previous studies [1]. The basis function parameters '¢i and ¢ 
were represented as 5 x 5 pixel masks, and were initialized to random numbers. For 
each update, an 80 x 80 subimage was randomly extracted from one of the images, 
and the coefficients were computed iteratively via (12,13) until the decrease in the 
energy function was less than 0.1%. The resulting residual, e, was then used for 
updating the functions '¢i and ¢ according to (18) and (19). The noise parameter 
AN was set to 400, corresponding to a noise variance that is 2.5% of the image 
variance (a; = 0.1). At this level of noise, the image reconstructions are visually 
indistinguishable from the original. The parameters of the prior used were f3 = 2.5, 
a = 0.3. A stable solution began to emerge after about one hour of training for 
M=3, and after several hours for M = 6 (Pentium II, 450 MHz). 

Shown in figure 2 are the basis functions learned for the cases M = 3, 4 and 
6, along with a standard bi-orthogonal 9/7 wavelet (FBI fingerprint standard [8]) 
for comparison. The difference between the learned wavelets and the standard 
wavelet is striking, in that the learned wavelets tile the orientation domain more 
evenly. They also exhibit self-similarity in orientation- i.e., they appear to be 
rotated versions of one another. Increasing the number of bands M from three to 
four produces narrower orientation tuning, but increasing overcompleteness beyond 
that point does not, as shown in the tiling diagram of figure 3. All the learned basis 
function spectra lie well within the Nyquist bounding box in the 2D Fourier plane, 
matching the power spectrum of the images in the training set. 

Coding efficiency was evaluated by compressing the sparsified coefficients ii using 
the embedded wavelet zerotree encoder [9] and measuring the signal-to-noise ratio 
for a fixed bit rate (SNR = 10 IOglO a; /mse). The results, shown in table 1, demon
strate that the overcomplete bases (M = 4) achieve higher SNR than either of two 
standard wavelet bases for the same bit rate. Note however that at these levels of 
SNR the reconstructions are visually identical to the original. At higher compres
sion ratios the learned bases loose their advantage, most likely due to the fact that 
they are non-orthogonal and hence produce more errors in the reconstruction when 
the coefficients are quantized. 

Table 1: Coding efficiency. 

I basis set I SNR I 
M = 3 (learned) 11.2 
M = 4 (learned) 11.9 
Daubechies 6 11.2 
FBI 9/7 11.4 
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Figure 2: Basis functions and corresponding power spectra for M = 3, 4 and 6, 
along with a standard 9/7 biorthogonal wavelet. Each column shows a different 
band, while each row shows a different level. The lone basis function in the last 
row is the scaling function (twice convolved with itself). The power spectra are 
plotted in the 2D-Fourier plane (vertical vs. horizontal spatial-frequency) with the 
maximum spatial-frequency at the Nyquist rate. 



M=3 (standard) M=3 (learned) M=4 (learned) M=6 (learned) 

Figure 3: Frequency domain tiling properties. Shown are iso-power contours at 50% 
of the maximum for each band and level. 

6 Conclusion 

We have shown in this work how a wavelet basis may be adapted so as to repre
sent the structures in natural images in terms of sparse, independent components. 
Importantly, the algorithm has the capacity to learn overcomplete basis sets, which 
are capable of tiling the joint space of position, orientation, and spatial-frequency 
in a more continuous fashion than traditional, critically sampled basis sets [10]. 
The overcomplete bases exhibit superior coding efficiency, in the sense of achieving 
higher SNR for a fixed bit rate. Although the improvements in coding efficiency are 
modest, we believe the method described here has the potential to yield even greater 
improvements when adapted to more specific image ensembles such as textures. 
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