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Abstract 

We propose a general Bayesian framework for performing independent 
component analysis (leA) which relies on ensemble learning and lin­
ear response theory known from statistical physics. We apply it to both 
discrete and continuous sources. For the continuous source the underde­
termined (overcomplete) case is studied. The naive mean-field approach 
fails in this case whereas linear response theory-which gives an improved 
estimate of covariances-is very efficient. The examples given are for 
sources without temporal correlations. However, this derivation can eas­
ily be extended to treat temporal correlations. Finally, the framework 
offers a simple way of generating new leA algorithms without needing 
to define the prior distribution of the sources explicitly. 

1 Introduction 

Reconstruction of statistically independent source signals from linear mixtures is an active 
research field. For historical background and early references see e.g. [I]. The source 
separation problem has a Bayesian formulation, see e.g., [2, 3] for which there has been 
some recent progress based on ensemble learning [4]. 

In the Bayesian framework, the covariances of the sources are needed in order to estimate 
the mixing matrix and the noise level. Unfortunately, ensemble learning using factorized 
trial distributions only treats self-interactions correctly and trivially predicts: (SiSi)­
(Si}(Sj) = 0 for i -I j. This naive mean-field (NMF) approximation first introduced in 
the neural computing context by Ref. [5] for Boltzmann machine learning may completely 
fail in some cases [6]. Recently, Kappen and Rodriguez [6] introduced an efficient learning 
algorithm for Boltzmann Machines based on linear response (LR) theory. LR theory gives 
a recipe for computing an improved approximation to the covariances directly from the 
solution to the NMF equations [7]. 

Ensemble learning has been applied in many contexts within neural computation, e.g. for 
sigmoid belief networks [8], where advanced mean field methods such as LR theory or 
TAP [9] may also be applicable. In this paper, we show how LR theory can be applied 
to independent component analysis (leA). The performance of this approach is compared 
to the NMF approach. We observe that NMF may fail for high noise levels and binary 



sources and for the underdetermined continuous case. In these cases the NMF approach 
ignores one of the sources and consequently overestimates the noise. The LR approach on 
the other hand succeeds in all cases studied. 

The derivation of the mean-field equations are kept completely general and are thus valid 
for a general source prior (without temporal correlations). The final eqs. show that the 
mean-field framework may be used to propose ICA algorithms for which the source prior 
is only defined implicitly. 

2 Probabilistic leA 

Following Ref. [10], we consider a collection of N temporal measurements, X = {Xdt}, 
where Xdt denotes the measurement at the dth sensor at time t. Similarly, let S = {Smd 
denote a collection of M mutually independent sources where Sm. is the mth source which 
in general may have temporal correlations. The measured signals X are assumed to be an 
instantaneous linear mixing of the sources corrupted with additive Gaussian noise r , that 
is, 

X=As+r , (1) 

where A is the mixing matrix. Furthermore, to simplify this exposition the noise is assumed 
to be iid Gaussian with variance a 2 . The likelihood of the parameters is then given by, 

P(XIA, ( 2 ) = ! dSP(XIA, a 2 , S) P(S) , (2) 

where P(S) is the prior on the sources which might include temporal correlations. We 
will, however, throughout this paper assume that the sources are temporally uncorrelated. 
We choose to estimate the mixing matrix A and noise level a2 by Maximum Likelihood 
(ML-II). The saddlepoint of P(XIA, ( 2 ) is attained at, 

810gP~~IA,(2) = 0 A = X(S)T(SST)-l (3) 

810gP~~IA,(2) = 0 a2 = D~(Tr(X - ASf(X - AS)) , (4) 

where (.) denotes an average over the posterior and D is the number of sensors. 

3 Mean field theory 

First, we derive mean field equations using ensemble learning. Secondly, using linear 
response theory, we obtain improved estimates of the off-diagonal terms of (SST) which 
are needed for estimating A and a 2 . The following derivation is performed for an arbitrary 
source prior. 

3.1 Ensemble learning 

We adopt a standard ensemble learning approach and approximate 

P(S IX A 2) = P(XIA, a 2 , S)P(S) 
"a P(XIA,a2 ) 

(5) 

in a family of product distributions Q(S) = TImt Q(Smt) . It has been shown in Ref. [11] 
that for a Gaussian P(XIA, a 2 , S), the optimal choice of Q(Smt) is given by a Gaussian 
times the prior: 

(6) 



In the following, it is convenient to use standard physics notation to keep everything as 
general as possible. We therefore parameterize the Gaussian as, 

P(XIA, a 2, S) = P(XIJ, h, S) = Ce~ Tr(ST JS)+Tr(hTS) , (7) 

where J = _AT AI a 2 is the M x M interaction matrix and h = A TXI a 2 has the same 
dimensions as the source matrix S. Note that h acts as an external field from which we can 
obtain all moments of the sources. This is a property that we will make use of in the next 
section when we derive the linear response corrections. The Kullback-Leibler divergence 
between the optimal product distribution Q (S) and the true source posterior is given by 

KL = ! dSQ(S)In P(SI~:~,a2) = InP(XIA,a2) -lnP(XIA,a2) (8) 

InP(XIA,a2) = 2)Og! d8P(8)e~>'~tS2+Y~tS + ~ 2: (Jmm - Amt)(8~t) 
mt mt 

1 
+2 Tr(ST)(J - diag(J)(S) + Tr(h - "If (S) + In C , (9) 

where P(XIA, a 2) is the naive mean field approximation to the Likelihood and diag(J) is 
the diagonal matrix of J. The saddlepoints define the mean field equations; 

oKL 
o(S) = 0 

oKL 
0(8;'t) = 0 

"I = h + (J - diag(J))(S) 

The remaining two equations depend explicitly on the source prior, P(S); 

oK L = 0 (8mt ) = _O_IOg! d8mtP(8mt)e~>'~t s;'t+Y~tS~t 
01mt 01mt 

(10) 

(11) 

== fbmt, Amt) (12) 

oKL = 0 : (82 \ = 2-0 -10g !d8 P(8 )e~>'~tS;'t+')'~tS~t (13) 
OAmt mtl OAmt mt mt . 

In section 4, we calculate fbmt' Amt) for some of the prior distributions found in the leA 
literature. 

3.2 Linear response theory 

As mentioned already, h acts as an external field. This makes it possible to calculate the 
means and covariances as derivatives of log P(XIJ, h), i.e. 

(8 \ = ologP(XIJ, h) 
mtl ohmt 

(14) 

tt' - (8 8 \ (8 \(8 \ _ 0 2 log P(XIJ, h) _ 0(8mt ) 
Xmm, = mt m't'l - mtl m't'l - !lh !lh - ~h . 

U m't' U mt U m't' 
(15) 

To derive an equation for X~m" we use eqs. (10), (11) and (12) to get 

tt' Of(1mt, Amt) 01mt 
Xmm, = 

ohm't' 

Of(1mt, Amt) ( "J tt ~) ~ = L...J mm"Xm"m' + Umm' Ott'· 
01mt m",m"¥:m 

(16) 
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Figure 1: Binary source recovery for low noise level (M = 2, D = 2). Shows from left 
to right: +/- the column vectors of; the true A (with the observations superimposed); the 
estimated A (NMF); estimated A (LR). 
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Figure 2: Binary source recovery for low noise level (M = 2, D = 2), Shows the dynamics 
of the fix-point iterations. From left to right; +/- the column vectors of A (NMF); +/- the 
column vectors of A (LR); variance (72 (solid:NMF, dashed:LR, thick dash-dotted: the true 
empirical noise variance). 

We now see that the x-matrix factorizes in time X~ml = ott' X~ml. This is a direct conse­
quence of the fact that the model has no temporal correlations. The above equation is linear 
and may straightforwardly be solved to yield 

X~ml = [(At - J)-l]mm' , 

where we have defined the diagonal matrix 

At = diag (8fh~ 'Alt) + J11 , ... , 8fhM~,AM.) + JMM) . 
8"(lt 8"(Mt 

(17) 

At this point is appropriate to explain why linear response theory is more precise than us­
ing the factorized distribution which predicts X~ml = 0 for non-diagonal terms. Here, 
we give an argument that can be found in Parisi's book on statistical field theory [7] : 
Let us assume that the approximate and exact distribution is close in some sense, i,e. 
Q(S) - P(SIX, A, (72) = c then (SmtSm1t)ex = (SmtSm1t)ap + O(c). Mean field the­
ory gives a lower bound on the log-Likelihood since K L , eq. (8) is non-negaitive. Conse­
quently, the linear term vanishes in the expansion of the log-Likelihood: log P(XIA, (72) = 
log P(XIA, (72) + O(c2 ) . It is therefore more precise to obtain moments of the variables 
through derivatives of the approximate log-Likelihood, i,e. by linear response. 

A final remark to complete the picture: if diag(J) in equation eq. (10) is exchanged with 
At = diag(Alt, ... , AMt) and likewise in the definition of At above we get TAP equations 

[9], The TAP equation for A is xt = 8fh=t ,A=,) = [(At - J)-l] . mt mm 8"(=t mm 
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Figure 3: Binary source recovery for high noise level (M = 2, D = 2). Shows from left 
to right: +/- the column vectors of; the true A (with the observations superimposed); the 
estimated A (NMF); estimated A (LR). 
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Figure 4: Binary source recovery for high noise level (M = 2, D = 2). Same plot as in 
figure 2. 

4 Examples 

In this section we compare the LR approach and the NMF approach on the noisy leA 
model. The two approaches are demonstrated using binary and continous sources. 

4.1 Binary source 

Independent component analysis of binary sources (e.g. studied in [12]) is considered for 
data transmission using binary modulation schemes such as MSK or biphase (Manchester) 
codes. Here, we consider a binary source Smt E { -1,1} with prior distribution P(Smt) = 
! [8(Smt - 1) + 8(Smt + 1)]. In this case we get the well known mean field equations 
(Smt) = tanhbmt). Figures 1 and 2 show the results of the NMF approach as well as LR 
approach in a low-noise variance setting using two sources (M = 2) and two sensors (D = 
2). Figures 3 and 4 show the same but in a high-noise setting. The dynamical plots show 
the trajectory of the fix-point iteration where 'x' marks the starting point and '0' the final 
point. Ideally, the noise-less measurements would consist of the four combinations (with 
signs) of the columns in the mixing matrix. However, due to the noise, the measurement 
will be scattered around these "prototype" observations. 

In the low-noise level setting both approaches find good approximations to the true mixing 
matrix and sources. However, the convergence rate of the LR approach is found to be faster. 
For high-noise variance the NMF approach fails to recover the true statistics. It is seen that 
one of the directions in the mixing matrix vanishes which in tum results in overestimating 
the noise variance. 
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Figure 5: Overcomplete continuous source recovery with M 3 and D = 2. Shows 
from left to right the observations, +/- the column vectors of; the true A; the estimated A 
(NMF); estimated A (LR). 
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Figure 6: Overcomplete continuous source recovery with M = 3 and D = 2. Same plot as 
in figure 2. Note that the initial iteration step for A is very large. 

4.2 Continuous Source 

To give a tractable example which illustrates the improvement by LR, we consider the 
Gaussian prior P(Smt) ex: exp( -o.S~t!2) (not suitable for source separation). This leads 
to fbmt, Amt) = 'Ymt/(o. - Amt). Since we have a factorized distribution, ensemble 
learning predicts (SmtSm't') - (Smt}(Sm't') = 8mm,8tt' (a. - Amt)-l = 8mm,8tt' (a. -
Jmm)-l, where the second equality follows from eq. (11). Linear response eq. (17) gives 
(SmtSm't') - (Smt}(Sm't') = 8tt' [(0.1 -J)-l]mm' which is identical with the exact 
result obtained by direct integration. 

For the popular choice of prior P(Smt) = ~ s [1], it is not possible to derive 
7r cos tnt 

fbmt. Amt) analytically. However, fbmt. Amt) can be calculated analytically for the 
very similar Laplace distribution. Both these examples have positive kurtosis. 

Mean field equations for negative kurtosis can be obtained using the prior P(Smt) ex:= 
exp( -(Smt - 1-£)2/2) + exp( -(Smt + 1-£)2/2) [1] leading to 

Figure 5 and 6 show simulations using this source prior with 1-£ = 1 in an overcomplete 
setting with D = 2 and M = 3. Note that 1-£ = 1 yields a unimodal source distribution 
and hence qualitatively different from the bimodal prior considered in the binary case. In 
the overcomplete setting the NMF approach fails to recover the true sources. See [13] for 
further discussion of the overcomplete case. 



5 Conclusion 

We have presented a general ICA mean field framework based upon ensemble learning 
and linear response theory. The naive mean-field approach (pure ensemble learning) fails 
in some cases and we speculate that it is incapable of handling the overcomplete case 
(more sources than sensors). Linear response theory, on the other hand, succeeds in all the 
examples studied. 

There are two directions in which we plan to extend this work: (1) to sources with temporal 
correlations and (2) to source models defined not by a parametric source prior, but directly 
in terms of the function j, which defines the mean field equations. Starting directly from 
the j-function makes it possible to test a whole range of implicitly defined source priors. 
A detailed analysis of a large selection of constrained and unconstrained source priors as 
well as comparisons of LR and the TAP approach can be found in [14]. 
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