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Abstract 

We develop an approach to object recognition based on match
ing shapes and using a resulting measure of similarity in a nearest 
neighbor classifier. The key algorithmic problem here is that of 
finding pointwise correspondences between an image shape and a 
stored prototype shape. We introduce a new shape descriptor, 
the shape context, which makes this possible, using a simple and 
robust algorithm. The shape context at a point captures the distri
bution over relative positions of other shape points and thus sum
marizes global shape in a rich, local descriptor. We demonstrate 
that shape contexts greatly simplify recovery of correspondences 
between points of two given shapes. Once shapes are aligned, shape 
contexts are used to define a robust score for measuring shape sim
ilarity. We have used this score in a nearest-neighbor classifier 
for recognition of hand written digits as well as 3D objects, using 
exactly the same distance function. On the benchmark MNIST 
dataset of handwritten digits, this yields an error rate of 0.63%, 
outperforming other published techniques. 

1 Introduction 

The last decade has seen increased application of statistical pattern recognition 
techniques to the problem of object recognition from images. Typically, an image 
block with n pixels is regarded as an n dimensional feature vector formed by con
catenating the brightness values of the pixels. Given this representation, a number 
of different strategies have been tried, e.g. nearest-neighbor techniques after extract
ing principal components [15, 13], convolutional neural networks [12], and support 
vector machines [14, 5]. Impressive performance has been demonstrated on datasets 
such as digits and faces. 

A vector of pixel brightness values is a somewhat unsatisfactory representation of an 
object. Basic invariances e.g. to translation, scale and small amount of rotation must 
be obtained by suitable pre-processing or by the use of enormous amounts of training 
data [12]. Instead, we will try to extract "shape", which by definition is required to 
be invariant under a group of transformations. The problem then becomes that of 



operationalizing a definition of shape. The literature in computer vision and pattern 
recognition is full of definitions of shape descriptors and distance measures, ranging 
from moments and Fourier descriptors to the Hausdorff distance and the medial 
axis transform. (For a recent overview, see [16].) Most of these approaches suffer 
from one of two difficulties: (1) Mapping the shape to a small number of numbers, 
e.g. moments, loses information. Inevitably, this means sacrificing discriminative 
power. (2) Descriptors restricted to silhouettes and closed curves are of limited 
applicability. Shape is a much more general concept. 

Fundamentally, shape is about relative positional information. This has motivated 
approaches such as [1] who find key points or landmarks, and recognize objects using 
the spatial arrangements of point sets. However not all objects have distinguished 
key points (think of a circle for instance), and using key points alone sacrifices the 
shape information available in smooth portions of object contours. 

Our approach therefore uses a general representation of shape - a set of points 
sampled from the contours on the object. Each point is associated with a novel 
descriptor, the shape context, which describes the coarse arrangement of the rest of 
the shape with respect to the point. This descriptor will be different for different 
points on a single shape S; however corresponding (homologous) points on similar 
shapes Sand S' will tend to have similar shape contexts. Correspondences between 
the point sets of S and S' can be found by solving a bipartite weighted graph 
matching problem with edge weights Cij defined by the similarity of the shape 
contexts of points i and j. Given correspondences, we can effectively calculate the 
similarity between the shapes S and S'. This similarity measure is then employed 
in a nearest-neighbor classifier for object recognition. 

The core of our work is the concept of shape contexts and its use for solving the 
correspondence problem between two shapes. It can be compared to an alternative 
framework for matching point sets due to Gold, Rangarajan and collaborators (e.g. 
[7, 6]). They propose an iterative optimization algorithm to jointly determine point 
correspondences and underlying image transformations. The cost measure is Eu
clidean distance between the first point set and a transformed version of the second 
point set. This formulation leads to a difficult non-convex optimization problem 
which is solved using deterministic annealing. Another related approach is elastic 
graph matching [11] which also leads to a difficult stochastic optimization problem. 

2 Matching with Shape Contexts 

In our approach, a shape is represented by a discrete set of points sampled from the 
internal or external contours on the shape. These can be obtained as locations of 
edge pixels as found by an edge detector, giving us a set P = {PI, ... ,Pn}, Pi E lR?, 
of n points. They need not, and typically will not, correspond to key-points such 
as maxima of curvature or inflection points. We prefer to sample the shape with 
roughly uniform spacing, though this is also not critical. Fig. 1(a,b) shows sample 
points for two shapes. For each point Pi on the first shape, we want to find the 
"best" matching point qj on the second shape. This is a correspondence problem 
similar to that in stereopsis. Experience there suggests that matching is easier if 
one uses a rich local descriptor instead of just the brightness at a single pixel or 
edge location. Rich descriptors reduce the ambiguity in matching. 

In this paper, we propose a descriptor, the shape context, that could play such a role 
in shape matching. Consider the set of vectors originating from a point to all other 
sample points on a shape. These vectors express the configuration of the entire 
shape relative to the reference point. Obviously, this set of n - 1 vectors is a rich 
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Figure 1: Shape context computation and matching. (a, b) Sampled edge points of two 
shapes. (c) Diagram of log-polar histogram bins used in computing the shape contexts. We 
use 5 bins for log rand 12 bins for (). (d-f) Example shape contexts for reference samples 
marked by 0,0, <I in (a,b). Each shape context is a log-polar histogram of the coordinates 
of the rest of the point set measured using the reference point as the origin. (Dark=large 
value.) Note the visual similarity of the shape contexts for 0 and 0, which were computed 
for relatively similar points on the two shapes. By contrast, the shape context for <I is 
quite different. (g) Correspondences found using bipartite matching, with costs defined by 
the X2 distance between histograms. 

description, since as n gets large, the representation of the shape becomes exact. 
The full set of vectors as a shape descriptor is much too detailed since shapes and 
their sampled representation may vary from one instance to another in a category. 
We identify the distribution over relative positions as a more robust and compact, 
yet highly discriminative descriptor. For a point Pi on the shape, we compute a 
coarse histogram hi of the relative coordinates of the remaining n - 1 points, 

This histogram is defined to be the shape context of Pi. The descriptor should 
be more sensitive to differences in nearby pixels. We therefore use a log-polar 
coordinate system (see Fig. l(c)). All distances are measured in units of a where a 
is the median distance between the n 2 point pairs in the shape. 

Note that the construction ensures that global translation or scaling of a shape will 
not affect the shape contexts. Since shape contexts are extremely rich descriptors, 
they are inherently tolerant to small perturbations of parts of the shape. While 
we have no theoretical guarantees here, robustness to small affine transformations, 
occlusions and presence of outliers is evaluated experimentally in [2]. Modifications 
to the shape context definition that provide for complete rotation invariance can 
alos be provided [2]. 

Consider a point Pi on the first shape and a point qj on the second shape. Let 
Cij = C (Pi, qj) denote the cost of matching these two points. As shape contexts are 



distributions represented as histograms, it is natural! to use the X2 test statistic: 

where hi(k) and hj(k) denote the K-bin normalized histogram at Pi and qj. 

The cost Cij for matching points can include an additional term based on the 
local appearance similarity at points Pi and qj. This is particularly useful when we 
are comparing shapes derived from gray-level images instead of line drawings. For 
example, one can add a cost based on color or texture similarity, SSD between small 
gray-scale patches, distance between vectors of filter outputs, similarity of tangent 
angles, and so on. The choice of this appearance similarity term is application 
dependent, and is driven by the necessary invariance and robustness requirements, 
e.g. varying lighting conditions make reliance on gray-scale brightness values risky. 

Given the set of costs Cij between all pairs of points i on the first shape and j 
on the second shape we want to minimize the total cost of matching subject to 
the constraint that the matching be one-to-one. This is an instance of the square 
assignment (or weighted bipartite matching) problem, which can be solved in O(N3) 
time using the Hungarian method. In our experiments, we use the more efficient 
algorithm of [10]. The input is a square cost matrix with entries Cij . The result is 
a permutation 7r(i) such that the sum Li Ci,lf(i) is minimized. 

When the number of samples on two shapes is not equal, the cost matrix can be 
made square by adding "dummy" nodes to each point set with a constant matching 
cost of Ed. The same technique may also be used even when the sample numbers are 
equal to allow for robust handling of outliers. In this case, a point will be matched 
to a "dummy" whenever there is no real match available at smaller cost than Ed. 

Thus, Ed can be regarded as a threshold parameter for outlier detection. 

Given a set of sample point correspondences between two shapes, one can proceed 
to estimate a transformation that maps one shape into the other. For this purpose 
there are several options; perhaps most common is the affine model. In this work, 
we use the thin plate spline (TPS) model, which is commonly used for representing 
flexible coordinate transformations [17, 6]. Bookstein [4], for example, found it to 
be highly effective for modeling changes in biological forms. The thin plate spline is 
the 2D generalization of the cubic spline, and in its regularized form, includes affine 
transformations as a limiting case. Our complete matching algorithm is obtained by 
alternating between the steps of recovering correspondences and estimating trans
formations. We usually employ a fixed number of iterations, typically three in large 
scale experiments, but more refined schemes are possible. However, experimental 
experiences show that the algorithmic performance is independent of the details. 
More details may be found in [2]. 

As far as we are aware, the shape context descriptor and its use for matching 2D 
shapes is novel. A related idea in past work is that due to Johnson and Hebert 
[9] in their work on range images. They introduced a representation for matching 
dense clouds of oriented 3D points called the "spin image" . A spin image is a 2D 
histogram formed by spinning a plane around a normal vector on the surface of the 
object and counting the points that fall inside bins in the plane. 

1 Alternatives include Bickel's generalization of the Kolmogorov-Smirnov test for 2D 
distributions [3], which does not require binning. 
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Figure 2: Handwritten digit recognition on the MNIST dataset . Left: Test set errors 
of a 1-NN classifier using SSD and Shape Distance (SD) measures. Right: Detail of 
performance curve for Shape Distance, including results with training set sizes of 15,000 
and 20,000. Results are shown on a semilog-x scale for K = 1, 3, 5 nearest neighbors. 

3 Classification using Shape Context matching 

Matching shapes enables us to define distances between shapes; given such a dis
tance measure a straightforward strategy for recognition is to use a K -NN classifier. 
In the following two case studies we used 100 point samples selected from the Canny 
edges of each image. We employed a regularized TPS transformation model and 
used 3 iterations of shape context matching and TPS re-estimation. After matching, 
we estimated shape distances as the weighted sum of three terms: shape context 
distance, image appearance distance and bending energy. 

We measure shape context distance between shapes P and Q as the symmetric sum 
of shape context matching costs over best matching points, i.e . 

.!. L argminC (p,T(q)) + ~ L argminC (p,T(q)) 
n P qEQ m Q PEP 

pE qE 

Dsc (P, Q) = (1) 

where T(·) denotes the estimated TPS shape transformation. We use a term 
Dac (P, Q) for appearance cost, defined as the sum of squared brightness differences 
in Gaussian windows around corresponding image points. This score is computed 
after the thin plate spline transformation T has been applied to best warp the im
ages into alignment. The third term Dbe (P, Q) corresponds to the 'amount' of 
transformation necessary to align the shapes. In the TPS case the bending energy 
is a natural measure (see [4, 2]). 

Case study 1: Digit recognition Here we present results on the MNIST dataset 
of handwritten digits, which consists of 60,000 training and 10,000 test digits [12]. 

Nearest neighbor classifiers have the property that as the number of examples n in 
the training set goes to infinity, the I-NN error converges to a value ~ 2E*, where 
E* is the Bayes Risk (for K-NN, K -+ 00 and K/n -+ 0, the error -+ E*). However, 
what matters in practice is the performance for small n, and this gives us a way 
to compare different similarity/distance measures. In Fig. 2, our shape distance is 
compared to SSD (sum of squared differences between pixel brightness values). 

On the MNIST dataset nearly 30 algorithms have been compared (http://www. 
research.att.com/ ,,-,yann/exdb/mnist/index.html). The lowest test set error rate 
published at this time is 0.7% for a boosted LeNet-4 with a training set of size 
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Figure 3: 3D object recognition. (a) Comparison of test set error for SSD, Shape Distance 
(SD), and Shape Distance with K-medoid prototypes (SD-proto) vs. number of prototype 
views. For SSD and SD, we varied the number of prototypes uniformly for all objects. For 
SD-proto, the number of prototypes per object depended on the within-object variation 
as well as the between-object similarity. (b) K-medoid prototype views for two different 
examples, using an average of 4 prototypes per object. 

60,000 X 10 synthetic distortions per training digit. Our error rate using 20,000 
training examples and 3-NN is 0.63%. 

Case study 2: 3D object recognition Our next experiment involves the 20 
common household objects from the COIL-20 database [13]. We prepared our train
ing sets by selecting a number of equally spaced views for each object and using 
the remaining views for testing. The matching algorithm is exactly the same as for 
digits. Fig. 3(a) shows the performance using 1-NN on the weighted shape distance 
compared to a straightforward sum of squared differences (SSD). SSD performs very 
well on this easy database due to the lack of variation in lighting [8]. 

Since the objects in the COIL-20 database have differing variability with respect 
to viewing angle, it is natural to ask whether prototypes can be allocated more 
efficiently. We have developed a novel editing algorithm based on shape distance 
and K-medoid clustering. K-medoids can be seen as a variant of K-means that 
restricts prototype positions to data points. First a matrix of pairwise similarities 
between all possible prototypes is computed. For a given number of K prototypes 
the K -medoid algorithm then iterates two steps: (i) For a given assignment of points 
to (abstract) clusters a prototype is selected by minimizing the average distance of 
the prototype to all elements in the cluster, and (ii) given the set of prototypes, 
points are then reassigned to clusters according to the nearest prototype. The 
number of prototypes is selected by a greedy splitting strategy starting from one 
prototype per category. We choose the cluster to split based on the associated overall 
misclassification error. This continues until the overall misclassification error has 
dropped below a criterion level. 

The editing algorithm is illustrated in Fig. 3(b). As seen, more prototypes are 
allocated to categories with high within class variability. The curve marked SD
proto in Fig. 3 shows the improved classification performance using this prototype 
selection strategy instead of equally-spaced views. Note that we obtain a 2.4% error 
rate with an average of only 4 two-dimensional views for each three-dimensional 
object, thanks to the flexibility provided by the matching algorithm. 



4 Conclusion 

We have presented a new approach to computing shape similarity and correspon
dences based on the shape context descriptor. Appealing features of our approach 
are its simplicity and robustness. The standard invariances are built in for free, and 
as a consequence we developed a classifier that is highly effective even when only a 
small number of training examples are available. 
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