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Abstract 

We present evidence that several higher-order statistical proper
ties of natural images and signals can be explained by a stochastic 
model which simply varies scale of an otherwise stationary Gaus
sian process. We discuss two interesting consequences. The first 
is that a variety of natural signals can be related through a com
mon model of spherically invariant random processes, which have 
the attractive property that the joint densities can be constructed 
from the one dimensional marginal. The second is that in some cas
es the non-stationarity assumption and only second order methods 
can be explicitly exploited to find a linear basis that is equivalent 
to independent components obtained with higher-order methods. 
This is demonstrated on spectro-temporal components of speech. 

1 Introduction 

Recently, considerable attention has been paid to understanding and modeling the 
non-Gaussian or "higher-order" properties of natural signals, particularly images. 
Several non-Gaussian properties have been identified and studied. For example, 
marginal densities of features have been shown to have high kurtosis or "heavy 
tails", indicating a non-Gaussian, sparse representation. Another example is the 
"bow-tie" shape of conditional distributions of neighboring features, indicating de
pendence of variances [11]. These non-Gaussian properties have motivated a number 
of image and signal processing algorithms that attempt to exploit higher-order s
tatistics of the signals, e.g., for blind source separation. In this paper we show 
that these previously observed higher-order phenomena are ubiquitous and can be 
accounted for by a model which simply varies the scale of an otherwise station
ary Gaussian process. This enables us to relate a variety of natural signals to one 
another and to spherically invariant random processes, which are well-known in 
the signal processing literature [6, 3]. We present analyses of several kinds of data 



from this perspective, including images, speech, magneto encephalography (MEG) 
activity, and socio-economic data (e.g., stock market data). Finally we present the 
results of experiments with algorithms for finding a linear basis equivalent to inde
pendent components that exploit non-stationarity so as to require only 2nd-order 
statistics. This simplification is possible whenever linearity and non-stationarity of 
independent sources is guaranteed such as for the powers of acoustic signals. 

2 Scale non-stationarity and high kurtosis 

Natural signals can be non-stationary in various ways, e.g. varying powers, changing 
correlation of neighboring samples, or even non-stationary higher moments. We will 
concentrate on the simplest possible variation and show in the following sections 
how it can give rise to many higher-order properties observed in natural signals. 
We assume that at any given instance a signal is specified by a probability density 
function with zero mean and unknown scale or power. The signal is assumed non
stationary in the sense that its power varies from one time instance to the next. 1 

We can think of this as a stochastic process with samples z(t) drawn from a zero 
mean distribution Pz(z) with samples possibly correlated in time. We observe a 
scaled version of this process with time varying scales s(t) > ° sampled from Ps(s), 

x(t) = s(t)z(t) , (1) 

The observable process x(t) is distributed according to 

Px(x) = (OOdsPs(s)Px(xls) = rXJ dsps(s) S-l Pz(~). 10 10 s 
(2) 

We refer to px(x) as the long-term distribution and pz(z) as the instantaneous 
distribution. In essence Px (x) is a mixture distribution with infinitely many kernels 
S-lpz(~). We would like to relate the sparseness of Pz(z), as measured by the 
kurtosis, to the sparseness of the observable distribution Px(x). 

Kurtosis is defined as the ratio between the fourth and second cumulant of a distri
bution [7]. As such it measures the length of the distribution's tails, or the sharpness 
of its mode. For a zero mean random variable x this reduces up to a constant to 

K[x] = ~::;! ,with (f(x)x = f dxf(x)px(x). (3) 

In this case we find that the kurtosis of the long-term distribution is always larger 
than the kurtosis of the instantaneous distribution unless the scale is stationary ([9] 
and [1] for symmetric pz(z)), 

K[x] ~K[z]. (4) 

To see this note that the independence of sand z implies, (xn)x = (sn)s (zn)z, and 

therefore, K[x] = K[z] (S4)s / (S2)~. From the inequality, ((S2 - C2)2)s ~ 0, which 

hold for any arbitrary constant c> 0, it is easy to show that (S4) s ~ (S2)~, where 
the equality holds for Ps(s) = 8(s - c). Together this leads to inequality (4), which 
states that for a fixed scale s(t), i.e. the magnitude of the signal is stationary, the 
kurtosis will be minimal. Conversely, non-stationary signals, defined as a variable 
scaling of an otherwise stationary process, will have increased kurtosis. 

IThroughout this paper we will refer to signals that are sampled in time. Note that 
all the arguments apply equally well to a spatial rather than temporal sampling, that is, 
images rather than time series. 
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Figure 1: Marginal distributions within 3 standard deviations are shown on a log
arithmic scale; left to right: natural image features, speech sound intensities, stock 
market variation, MEG alpha activity. The measured kurtosis is 4.5, 16.0, 12.9, and 
5.3 respectively. On top the empirical histograms are presented and on bottom the 
model distributions. The speech data has been fit with a Meijer-G function G5g [3]. 
For the MEG activity, the stock market data and the image features a mixture of 
zero mean Gaussians was used. 

Figure 1 shows empirical plots of the marginal distributions for four natural signals; 
image, speech, stock market, and MEG data. As image feature we used a wavelet 
component for a 162x162 natural texture image of sand (presented in [4]). Self
inverting wavelets with a down-sampling factor of three where used. The speech 
signal is a 2.3 s recording of a female speaker sampled at 8 kHz with a noise level 
less than -25 dB. The signal has been band limited between 300 Hz and 3.4 kHz cor
responding to telephone speech. The market data are the daily closing values of the 
NY Stock exchange composite index from 02/01/1990 to 04/28/2000. We analyzed 
the variation from the one day linear prediction value to remove the upwards trend 
of the last decade. The MEG data is band-passed (10-12 Hz) alpha activity of a in
dependent component of 122 MEG signals. This independendt component exhibits 
alpha de-synchronization for a visio-motor integration task [10]. One can see that 
in all four cases the kurtosis is high relative to a Gaussian (K = 3). Our claim is 
that for natural signals, high kurtosis is a natural result of the scale non-stationarity 
of the signal. Additional evidence comes from the behavior seen in the conditional 
histograms of the joint distributions, presented in the next section. 

3 Higher-order properties of joint densities 

It has been observed in images that the conditional histograms of joint densities 
from neighboring features (neighboring in scale, space, and/or orientation) exhibit 
variance dependencies that cannot be accounted for by simple second-order model
s [11]. Figure 2 shows empirical conditional histograms for the four types of natural 
signals we considered earlier. One can see that speech and stock-market data exhibit 
the same variance dependency or "bow-tie" shape exhibited by images. 
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Figure 2: (Top) Empirical conditional histograms and (bottom) model conditional 
density derived from the one dimensional marginals presented in the previous figure 
assuming the data is sampled form a SIRP. Good correspondence validates the SIRP 
assumption which is equivalent to our non-stationary scale model for slow varying 
scales. 

The model of Equation 1 can easily account for this observation if we assume slowly 
changing scales s(t). A possible explanation is that neighboring samples or features 
exhibit a common scale. If two zero mean stochastic variables are scaled both with 
the same factors their magnitude and variance will increase together. That is, as 
the magnitudes of one variable increase so will the magnitude and the variance of 
the other variable. This results in a broadening of the histogram of one variable 
as one increases the value of the conditioning variable - resulting in a "bow-tie" 
shaped conditional density. 

4 Relationship to spherical invariant random process 

A closely related class of signals to those in Equation 1 is the so-called Spherical 
Invariant Random Process (SIRP). If the signals are short time Gaussian and the 
powers vary slowly the class of signals described are approximately SIRPs. Despite 
the restriction to Gaussian distributed z SIRPs have been shown to be a good 
model for a range of stochastic processes with very different higher-order properties, 
depending on the scale distributions Ps (s). They have been used in a variety of signal 
processing applications [6]. Band-limited speech, in particular, has been shown to 
be well described by SIRPs [3]. If z is multidimensional, such as a window of samples 
in a time series or a multi-dimensional feature vector, one talks about Spherically 
Invariant Random Vectors SIRVs. Natural images have been modeled by what in 
essence is closely related to SIRV s - a infinite mixture of zero mean Gaussian 
features [11]. Similar models have also been used for financial time series [2]. 

The fundamental property of SIRPs is that the joint distribution of a SIRP is 
entirely defined by a univariate characteristic function Cx(u) and the covariance ~ 
of neighboring samples [6]. They are directly related to our scale-non-stationarity 
model through a theorem by Kingman and Yao which states that any SIRP is 



equivalent to a zero mean Gaussian process z(t) with an independent stochastic 
scale s. Furthermore the univariate characteristic function Cx(u) specifies Ps(s) 
and the 1D marginal Px(x) and visa versa [6]. From the characteristic function 
Cx(u) and the covariance 1; one can also construct all higher dimensional joint 
densities. This leads to the following relation between the marginal densities of 
various orders [3], 

Pn(x) = 7r-n/2 fn(xT1;-lx), with x E IRn , and 1; = (xxT), (5) 

) d ) -1/2 fOO 2) fn+2(S = - dsfn(s , hm(s) = 7r _oohm+1(s + y dy (6) 

In particular these relations allow us to compute the joint density P2(X(t), x(t + 1)) 
from an empirically estimated marginal density Pi (x(t)) and the covariance of x(t) 
and x(t+ 1). Comparing the resulting 2D joint density to the observed joint density 
allows to us verify the assumption that the data is sampled from a SIRP. In so doing 
we can more firmly assert that the observed two dimensional joint histograms can 
in fact be explained as a Gaussian process with a non-stationary scale. 

If we use zero mean Gaussian mixtures, p1(X) = L~lmiexp(-x2/uT), as the 
1D model distribution the resulting 2D joint distribution is simply Pn(x) = 
L~l mi exp( -xT1;-lx / uT). If the model density is given by a Meijer-G func
tion, as suggested in [3] with P1(X) = ro1A)G5g(A2X 2IA - 0.5,A - 0.5), then the 2D 

joint is p2(X) = ~:(A) G~g(A2xT1;-lxl - 0.5; 0, A, A). In both cases it is assumed 
that the data is normalized to unit variance. 

Brehm has used this approach to demonstrate that band-limited speech is well de
scribed by a SIRP [3] . In addition, we show here that the same is true for the image 
features and stock market data presented above. The model conditional densities 
shown in Figure 2 correspond well with the empirical conditional histograms. In 
particular they exhibit the characteristic bow-tie structure. We emphasize that 
these model 2D joint densities have been obtained only from the 1D marginal of 
Figure 1 and the covariance of neighboring samples. 

The deviations of the observed and model 2D joint distributions are likely due to 
variable covariance itself, that is, not only does the overall scale or power vary 
with time, but the components of the covariance matrix vary independently of each 
other. For example in speech the covariance of neighboring samples is well known to 
change considerably over time. Nevertheless, the surprising result is that a simple 
scale non-stationarity model can reproduce the higher-order statistical properties 
in a variety of natural signals. 

5 Spectro-temporallinear basis for speech 

As an example of the utility of this non-stationarity assumption, we analyze the 
statistical properties of the powers of a single source, in particular for speech signals. 
Motivated by the auditory spectro-temporal receptive field reported in [5] and work 
on receptive fields and independent components we are interested to find a linear 
basis of independent components in a spectro-temporal window of speech signals. 
In [9, 8] we show that one can use second order statistic to uniquely recover sources 
from a mixture provided that the mix is linear and the sources are non-stationary. 
One can do so by finding a basis that guarantees uncorrelated signals at multiple 
time intervals (multiple decorrelation algorithm (MDA)). Our present model argues 
that features of natural signals such as the powers in different frequency bands can 
be assumed non-stationary, while powers of independent signals are known to add 
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Figure 3: Spectro-temporal representation of speech. One pixel in the horizontal 
direction corresponds to 16 ms. In the vertical direction 21 Bark scale power bands 
are displayed. The upper diagram shows the log-powers for a 2.5 s segment of the 
200 s recording used to compute the different linear bases. The three lower diagrams 
show three sets of 15 linear basis components for 2lx8 spectra-temporal segments of 
the speech powers. The sets correspond to PCA, MDA, and ICA respectively. Note 
that these are not log-powers, hence the smaller contribution of the high frequencies 
as compared to the log-power plot on top. 

linearly. We should be able therefore to identify with second order methods the 
same linear components as with independent component algorithms where high
order statistical assumptions are invoked. 

We compute the powers in 21 frequency bands on a Bark scale for short consecutive 
time intervals. We choose to find a basis for a segment of 21 bands and 8 neighbor
ing time slices corresponding to 128 ms of signal between 0 and 4 kHz. We used half 
overlapping windows of 256 samples such that for a 8 kHz signal neighboring time 
slices are 16 ms apart. A set of 7808 such spectro-temporal segments were sampled 
from 200 s of the same speech data presented previously. Figure 3 shows the results 
obtained for a subspace of 15 components. One can see that the components ob
tained with MDA are quite similar to the result of rcA and differ considerably from 
the principal components. From this we conclude that speech powers can in fact 
be thought of as a linear combination of non-stationary independent components. 
In general, the point we wish to make is to demonstrate the strength of second
order methods when the assumptions of non-stationarity, independence, and linear 
superposition are met. 



6 Conclusion 

We have presented evidence that several high-order statistical properties of natural 
signals can be explained by a simple scale non-stationary model. For four types of 
natural signals, we have shown that a scale non-stationary model will reproduce the 
high-kurtosis behavior of the marginal densities. Furthermore, for the case of scale 
non-stationary with Gaussian density (SIRP), we have shown that we can reproduce 
the variance dependency seen in conditional histograms of the joint density directly 
from the empirical marginal densities. This leads to the conclusion that a scale non
stationary model (e.g. SIRP) is a good model for these natural signals. We have 
shown that one can exploit the assumptions of this model to compute a linear basis 
for natural signals without having to invoke higher order statistically techniques. 
Though we do not claim that all higher-order properties or all natural signals can 
be explained by a scale non-stationary model, it is remarkable that such a simple 
model can account for a variety of the higher-order phenomena and for a variety of 
signal types. 
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