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Abstract 

We analyze Gallager codes by employing a simple mean-field approxi
mation that distorts the model geometry and preserves important interac
tions between sites. The method naturally recovers the probability prop
agation decoding algorithm as an extremization of a proper free-energy. 
We find a thermodynamic phase transition that coincides with informa
tion theoretical upper-bounds and explain the practical code performance 
in terms of the free-energy landscape. 

1 Introduction 

In the last years increasing interest has been devoted to the application of mean-field tech
niques to inference problems. There are many different ways of building mean-field theo
ries. One can make a perturbative expansion around a tractable model [1,2], or assume a 
tractable structure and variationally determine the model parameters [3]. 

Error-correcting codes (ECC) are particularly interesting examples of inference problems 
in loopy intractable graphs [4]. Recently the focus has been directed to the state-of-the art 
high performance turbo codes [5] and to Gallager and MN codes [6,7]. Statistical physics 
has been applied to the analysis of ECCs as an alternative to information theory methods 
yielding some new interesting directions and suggesting new high-performance codes [8]. 
Sourlas was the first to relate error-correcting codes to spin glass models [9], showing that 
the Random-energy Model [10] can be thought of as an ideal code capable of saturating 
Shannon's bound at vanishing code rates. This work was extended recently to the case of 
finite code rates [11] and has been further developed for analyzing MN codes of various 
structures [12]. All of the analyzes mentioned above as well as the recent turbo codes 
analysis [13] relied on the replica approach under the assumption of replica symmetry. 
To date, the only model that can be analyzed exactly is the REM that corresponds to an 
impractical coding scheme of a vanishing code rate. 

Here we present a statistical physics treatment of non-structured Gallager codes by em
ploying a mean-field approximation based on the use of a generalized tree structure (Bethe 



lattice [14]) known as Husimi cactus that is exactly solvable. The model parameters are 
just assumed to be those of the model with cycles. In this framework the probability prop
agation decoding algorithm (PP) emerges naturally providing an alternative view to the re
lationship between PP decoding and mean-field approximations already observed in [15]. 
Moreover, this approach has the advantage of being a slightly more controlled and easier 
to understand than replica calculations. 

This paper is organized as follows: in the next section we present unstructured Gallager 
codes and the statistical physics framework to analyze them, in section 3 we make use of 
the lattice geometry to solve the model exactly. In section 4 we analyze the typical code 
performance. We summarize the results in section 5. 

2 Gallager codes: statistical physics formulation 

We will concentrate here on a simple communication model whereby messages are rep
resented by binary vectors and are communicated through a Binary Symmetric Channel 
(BSC) where uncorrelated bit flips appear with probability /. A Gallager code is defined 
by a binary matrix A = [CI I C 2 ], concatenating two very sparse matrices known to both 
sender and receiver, with C 2 (of dimensionality (M - N) x (M - N) being invertible
the matrix C I is of dimensionality (M - N) x N. 

Encoding refers to the production of an M dimensional binary code word t E {O, l}M 
(M > N) from the original message e E {O,l}N by t = GTe (mod 2), where all 
operations are performed in the field {a, I} and are indicated by (mod 2). The generator 
matrix is G = [1 I C2I C I ] (mod 2), where 1 is the N x N identity matrix, implying that 
AGT (mod 2) = ° and that the first N bits oft are set to the message e. In regular Gallager 
codes the number of non-zero elements in each row of A is chosen to be exactly K . The 
number of elements per column is then C = (1 - R)K, where the code rate is R = N I M 
(for unbiased messages). The encoded vector t is then corrupted by noise represented by 
the vector, E {O, l}M with components independently drawn from P( () = (1- J)8( () + 
/8(( - 1). The received vector takes the form r = GTe +, (mod 2). 

Decoding is carried out by multiplying the received message by the matrix A to produce 
the syndrome vector z = Ar = A, (mod 2) from which an estimate T for the noise 
vector can be produced. An estimate for the original message is then obtained as the first 
N bits of r + T (mod 2). The Bayes optimal estimator (also known as marginal posterior 
maximizer, MPM) for the noise is defined as Tj = argmaxr . P(Tj I z) , where Tj E {a, I}. 

1 

The performance of this estimator can be measured by the probability of bit error Pb = 
1 - 11M ~~1 8[Tj; (j], where 8[;] is Kronecker's delta. Knowing the matrices C 2 and 
C I , the syndrome vector z and the noise level/it is possible to apply Bayes' theorem and 
compute the posterior probability 

1 
P(r I z) = ZX [z = Ar(mod 2)] P(r), (1) 

where X[X] is an indicator function providing 1 if X is true and ° otherwise. To compute 
the MPM one has to compute the marginal posterior Ph I z) = ~i#j P(r I z), which 
in general requires O(2M) operations, thus becoming impractical for long messages. To 
solve this problem one can use the sparseness of A to design algorithms that require O(M) 
operations to perform the same task. One of these methods is the probability propagation 
algorithm (PP), also known as belief propagation or sum-product algorithm [16]. 

The connection to statistical physics becomes clear when the field {a, I} is replaced by 
Ising spins {± I} and mod 2 sums by products [9] . The syndrome vector acquires the form 
of a multi-spin coupling Jp, = TIjE.c(p,) (j where j = 1,· .. ,M and f..L = 1,·· . , (M - N). 



Figure 1: Husimi cactus with K = 3 and connectivity C = 4. 

The K indices of nonzero elements in the row f.L of a matrix A, which is not necessarily a 
concatenation of two separate matrices (therefore, defining an unstructured Gallager code), 
are given by C(f.L) = {it,'" ,jK}, and in a column l are given by M(l) = {f.Ll'···' f.Lc}. 

The posterior (1) can be written as the Gibbs distribution [12]: 

P{3 (T 1.1) = -Zl lim exp [- ,81l'Y (Tj .1) 1 
1'--+00 

(2) 

-, Mf (.1fA II Tj - 1) -F t Tj . 

fA=l jE£.(fA) j=l 

The external field corresponds to the prior probability over the noise and has the form 
F = atanh(l- 2J). Note that the Hamiltonian depends on a hyper-parameter that has to be 
set as , -t 00 for optimal decoding. The disorder is trivial and can be gauged as .1fA f-t 1 
by using Tj f-t Tj (j. The resulting Hamiltonian is a multi-spin ferromagnet with finite 
connectivity in a random field h j = F(j. The decoding process corresponds to finding 
local magnetizations at temperature,8 = 1, mj = (Tj) (3=1 and calculating estimates as 
Tj = sgn(mj). 

In the {± 1 } representation the probability of bit error, acquires the form 

11M 
Pb = 2' - 2M L(j sgn(mj), 

j=l 

connecting the code performance with the computation of local magnetizations. 

3 Bethe-like Lattice calculation 

3.1 Generalized Bethe lattice: the "usimi cactus 

(3) 

A Husimi cactus with connectivity C is generated starting with a polygon of K vertices 
with one Ising spin in each vertex (generation 0). All spins in a polygon interact through 
a single coupling .1fA and one of them is called the base spin. In figure 1 we show the first 
step in the construction of a Husimi cactus, in a generic step the base spins of the n - 1 
generation polygons, numbering (C -l)(K -1), are attached to K -1 vertices ofa gen
eration n polygon. This process is iterated until a maximum generation nmax is reached, 
the graph is then completed by attaching C uncorrelated branches of nmax generations at 
their base spins. In that way each spin inside the graph is connected to exactly C poly
gons. The local magnetization at the centre mj can be obtained by fixing boundary (initial) 
conditions in the O-th generation and iterating recursion equations until generation nmax 
is reached. Carrying out the calculation in the thermodynamic limit corresponds to having 
nmax "" In M generations and M -t 00. 

The Hamiltonian of the model has the form (2) where C(f.L) denotes the polygon f.L of the 
lattice. Due to the tree-like structure, local quantities far from the boundary can be cal-



culated recursively by specifying boundary conditions. The typical decoding performance 
can therefore be computed exactly without resorting to replica calculations [17]. 

3.2 Recursion relations: probability propagation 

We adopt the approach presented in [18] where recursion relations for the probability dis
tribution Pl-'k(Tk) of the base spin of the polygon J-L is connected to (C - I)(K - I) dis
tributions Pvj (Tj), with v E M (j) \ J-L (all polygons linked to j but J-L) of polygons in the 
previous generation: 

Pl-'k(Tk) = ~ Tr{Tj} exp [(3 (.1I-'Tk II Tj -I) + FTk] II II Pvjh), 
jE'c(I-')\k vEM(j)\l-'jE'c(I-')\k 

(4) 
where the trace is over the spins Tj such that j E C(J-L) \ k. 

The effective field Xvj on a base spin j due to neighbors in polygon v can be written as : 

exp (-2x .) = e2F Pvj( -) (5) 
VJ Pvj (+)' 

Combining (4) and (5) one finds the recursion relation: 

~ Trh} exp [-(3.11-' ITjE'c(I-')\k Tj + EjE'c(I-')\k(F + EVEMU)\I-' XVj)Tj] 
exp(-2xl-'k)=------~~------------------------------------~ 

Trh} exp [+(3.11-' ITjE'c(I-')\k Tj + EjE£(I-')\k(F + EVEMU)\I-' XVj)Tj] 
(6) 

By computing the traces and taking (3 -+ 00 one obtains: 

XI-'k = atanh [.11-' II tanh(F + L XVj)] 
jE'c(I-')\k VEMU)\I-' 

(7) 

The effective local magnetization due to interactions with the nearest neighbors in one 
branch is given by ml-'j = tanh (x I-'j). The effective local field on a base spin j of a polygon 
J-L due to C - 1 branches in the previous generation and due to the external field is XI-'j = 
F + EVEMU)\I-' Xvj; the effective local magnetization is, therefore, ml-'j = tanh(xl-'j). 
Equation (7) can then be rewritten in terms ofml-'j and ml-'j and the PP equations [7,15,16] 
can be recovered: 

ml-'k = tanh (F + L atanh (mVk)) 
vEMU)\1-' 

ml-'k = .11-' II ml-'j 
jE'c(I-')\k 

(8) 

Once the magnetizations on the boundary (O-th generation) are assigned, the local magne
tization mj in the central site is determined by iterating (8) and computing: 

mj = tanh (F + L atanh (mVj)) (9) 
vEMU) 

3.3 Probability propagation as extremization of a free-energy 

The equations (8) describing PP decoding represent extrema of the following free-energy: 

M-N M-N 

.1'( {ml-'k' ml-'d) = L L In(1 + ml-'iml-'i) - L In(1 + .11-' II ml-'i) (10) 
1-'=1 iE'c 1-'=1 iE'c 
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Figure 2: (a) Mean normalized overlap between the actual noise vector C and decoded 
noise T for K = 4 and C = 3 (therefore R = 1/4). Theoretical values (D), experimental 
averages over 20 runs for code word lengths M = 5000 (e) and M = 100 (full line). 
(b) Transitions for K = 6. Shannon's bound (dashed line), information theory upper 
bound (full line ) and thermodynamic transition obtained numerically (0). Theoretical (0) 
and experimental (+, M = 5000 averaged over 20 runs) PP decoding transitions are also 
shown. In both figures, symbols are chosen larger than the error bars. 

tin reF II (1 + mlJ.j) + e-F II (1- mlJ.j)] 
j=l IJ.EM(j) IJ.EM(j) 

The iteration of the maps (8) is actually one out of many different methods of finding 
extrema of this free-energy (not necessarily stable) . This observation opens an alternative 
way for analyzing the performance of a decoding algorithm by studying the landscape (10). 

4 Typical performance 

4.1 Macroscopic description 

The typical macroscopic states of the system during decoding can be described by his
tograms of the variables mlJ.k and mlJ.k averaged over all possible realizations of the noise 
vector C. By applying the gauge transformation:flJ. r-+ 1 and Tj r-+ Tj(j, assigning the 
probability distributions Po (x) to boundary fields and averaging over random local fields 
F( one obtains from (7) the recursion relation in the space of probability distributions 
P(x): 

= (11) 

where Pn(x) is the distribution of effective fields at the n-th generation due to the previous 
generations and external fields, in the thermodynamic limit the distribution far from the 
boundary will be Poo(x) (generation n -+ (0). The local field distribution at the central 
site is computed by replacing C - 1 by C in (11), taking into account C polygons in the 
generation just before the central site, and inserting the distribution P 00 (x) . Equations (11) 
are identical to those obtained by the replica symmetric theory as in [12] . 



By setting initial (boundary) conditions Po(x) and numerically iterating (11), for C ~ 3 
one can find, up to some noise level ls, a single stable fixed point at infinite fields, corre
sponding to a totally aligned state (successful decoding). At ls a bifurcation occurs and 
two other fixed points appear, stable and unstable, the former corresponding to a misaligned 
state (decoding failure). This situation is identical to that one observed in [12]. In terms of 
the free-energy (10), below ls the landscape is dominated by the aligned state that is the 
global minimum. Above ls a sub-optimal state, corresponding to an exponentially large 
number of spurious local minima of the Hamiltonian (2), appears and convergence to the 
totally aligned state becomes a difficult task. At some critical noise level the totally aligned 
state loses the status of global minimum and the thermodynamic transition occurs. 

The practical PP decoding is performed by setting initial conditions as ml-'j = 1 - 21, 
corresponding to the prior probabilities and iterating (8), until stationarity or a maximum 
number of iterations is attained. The estimate for the noise vector is then produced by com
puting Tj = sign(mj). At each decoding step the system can be described by histograms 
of the variables (8), this is equivalent to iterating (11) (a similar idea was presented in [7]). 
Below ls the process always converges to the successful decoding state, above ls it con
verges to the successful decoding only if the initial conditions are fine tuned, in general 
the process converges to the failure state. In Fig.2a we show the theoretical mean overlap 
between actual noise C and the estimate T as a function of the noise levell, as well as 
results obtained with PP decoding. 

Information theory provides an upper bound for the maximum attainable code rate by 
equalizing the maximal information contents of the syndrome vector z and of the noise 
estimate T [7]. The thermodynamic phase transition obtained by finding the stable fixed 
points of (11) and their free-energies interestingly coincides with this upper bound within 
the precision of the numerical calculation. Note that the performance predicted by thermo
dynamics is not practical as it requires O(2M) operations for an exhaustive search for the 
global minimum of the free-energy. In Fig.2b we show the thermodynamic transition for 
K = 6 and compare with the upper bound, Shannon's bound and the theoretical ls values. 

4.2 Tree-like approximation and the thermodynamic limit 

The geometrical structure of a Gallager code defined by the matrix A can be represented 
by a bipartite graph (Tanner graph) [16] with bit and check nodes. Each column j of A 
represents a bit node and each row J.L represents a check node, AI-'j = 1 means that there 
is an edge linking bit j to check J.L . It is possible to show that for a random ensemble of 
regular codes, the probability of completing a cycle after walking l edges starting from an 
arbitrary node is upper bounded by P[l; K, C, M] :-:; l2 Kl 1M. It implies that for very large 
M only cycles of at least order In M survive. In the thermodynamic limit M -+ 00 the 
probability P [l; K, C, M] -+ a for any finite l and the bulk of the system is effectively tree
like. By mapping each check node to a polygon with K bit nodes as vertices, one can map 
a Tanner graph into a Husimi lattice that is effectively a tree for any number of generations 
of order less than In M. It is experimentally observed that the number of iterations of (8) 
required for convergence does not scale with the system size, therefore, it is expected that 
the interior of a tree-like lattice approximates a Gallager code with increasing accuracy as 
the system size increases. Fig.2a shows that the approximation is fairly good even for sizes 
as small as M = 100. 

5 Conclusions 

To summarize, we solved exactly, without resorting to the replica method, a system rep
resenting a Gallager code on a Husimi cactus. The results obtained are in agreement with 
the replica symmetric calculation and with numerical experiments carried out in systems 



of moderate size. The framework can be easily extended to MN and similar codes. New 
insights on the decoding process are obtained by looking at a proper free-energy landscape. 
We believe that methods of statistical physics are complimentary to those used in the statis
tical inference community and can enhance our understanding of general graphical models. 
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