
Boosting with Multi-Way Branching in 
Decision Trees 

Yishay Mansour 

AT&T Labs-Research 
180 Park Ave 
Florham Park NJ 07932 

David McAllester 

{mansour, dmac }@research.att.com 

Abstract 

It is known that decision tree learning can be viewed as a form 
of boosting. However, existing boosting theorems for decision tree 
learning allow only binary-branching trees and the generalization to 
multi-branching trees is not immediate. Practical decision tree al
gorithms, such as CART and C4.5, implement a trade-off between 
the number of branches and the improvement in tree quality as 
measured by an index function . Here we give a boosting justifica
tion for a particular quantitative trade-off curve. Our main theorem 
states, in essence, that if we require an improvement proportional 
to the log of the number of branches then top-down greedy con
struction of decision trees remains an effective boosting algorithm. 

1 Introduction 

Decision trees have been proved to be a very popular tool in experimental machine 
learning. Their popularity stems from two basic features - they can be constructed 
quickly and they seem to achieve low error rates in practice. In some cases the 
time required for tree growth scales linearly with the sample size. Efficient tree 
construction allows for very large data sets. On the other hand, although there 
are known theoretical handicaps of the decision tree representations, it seem that 
in practice they achieve accuracy which is comparable to other learning paradigms 
such as neural networks. 

While decision tree learning algorithms are popular in practice it seems hard to 
quantify their success ,in a theoretical model. It is fairly easy to see that even 
if the target function can be described using a small decision tree, tree learning 
algorithms may fail to find a good approximation. Kearns and, Mansour [6] used 
the weak learning hypothesis to show that standard tree learning algorithms perform 
boosting. This provides a theoretical justification for decision tree learning similar 



Boosting with Multi-Way Branching in Decision Trees 301 

to justifications that have been given for various other boosting algorithms, such as 
AdaBoost [4]. 

Most decision tree learning algorithms use a top-down growth process. Given a 
current tree the algorithm selects some leaf node and extends it to an internal node 
by assigning to it some "branching function" and adding a leaf to each possible 
output value of this branching function. The set of branching functions may differ 
from one algorithm to another, but most algorithms used in practice try to keep the 
set of branching functions fairly simple. For example, in C4.5 [7], each branching 
function depends on a single attribute. For categorical attributes, the branching 
is according to the attribute's value, while for continuous attributes it performs a 
comparison of the attribute with some constant. 

Of course such top-down tree growth can over-fit the data - it is easy to construct 
a (large) tree whose error rate on the training data is zero. However, if the class of 
splitting functions has finite VC dimension then it is possible to prove that, with 
high confidence of the choice of the training data, for all trees T the true error rate 

of T is bounded by f(T) + 0 (JITI/m) where f(T) is the error rate of T on the 

training sample, ITI is the number of leaves of T, and m is the size of the training 
sample. Over-fitting can be avoided by requiring that top-down tree growth produce 
a small tree. In practice this is usually done by constructing a large tree and then 
pruning away some of its nodes. Here we take a slightly different approach. We 
assume a given target tree size s and consider the problem of constructing a tree T 
with ITI = sand f(T) as small as possible. We can avoid over-fitting by selecting a 
small target value for the tree size. 

A fundamental question in top-down tree growth is how to select the branching 
function when growing a given leaf. We can think of the target size as a "budget" . 
A four-way branch spends more of the tree size budget than does a two-way branch 
- a four-way branch increases the tree size by roughly the same amount as two two
way branches. A sufficiently large branch would spend the entire tree size budget in 
a single step. Branches that spend more of the tree size budget should be required to 
achieve more progress than branches spending less ofthe budget. Naively, one would 
expect that the improvement should be required to be roughly linear in the number 
of new leaves introduced - one should get a return proportional to the expense. 
However, a weak learning assumption and a target tree size define a nontrivial 
game between the learner and an adversary. The learner makes moves by selecting 
branching functions and the adversary makes moves by presenting options consistent 
with the weak learning hypothesis. We prove here that the learner achieve a better 
value in this game by selecting branches that get a return considerably smaller than 
the naive linear return. Our main theorem states, in essence, that the return need 
only be proportional to the log of the number of branches. 

2 Preliminaries 

We assume a set X of instances and an unknown target function f mapping X 
to {O,l}. We assume a given "training set" S which is a set of pairs of the form 
(x, f(x)). We let 1l be a set of potential branching functions where each hE 1l is 
a function from X to a finite set Rh - we allow different functions in 1l to have 
different ranges. We require that for any h E 1l we have IRhl ~ 2. An 1l-tree is 



302 Y. Mansour and D. McAllester 

a tree where each internal node is labeled with an branching function h E 1i and 
has children corresponding to the elements of the set Rh. We define ITI to be the 
number ofleafnodes ofT. We let L(T) be the set ofleafnodes ofT. For a given tree 
T, leaf node f of T and sample S we write Sl to denote the subset of the sample S 
reaching leaf f. For f E T we define Pl to be the fraction of the sample reaching leaf 
f, i.e., ISll/ISI. We define ql to be the fraction of the pairs (x, f(x» in Sl for which 
f(x) = 1. The training error ofT, denoted i(T), is L:lEL(T)Plmin(ql, 1- ql). 

3 The Weak Learning Hypothesis and Boosting 

Here, as in [6], we view top-down decision tree learning as a form of Boosting [8, 3]. 
Boosting describes a general class of iterative algorithms based on a weak learning 
hypothesis. The classical weak learning hypothesis applies to classes of Boolean 
functions. Let 1i2 be the subset of branching functions h E 1i with IRhl = 2. For 
c5 > ° the classical c5-weak learning hypothesis for 1i2 states that for any distribution 
on X there exists an hE 1i2 with PrD(h(x) f f(x)) ~ 1/2-c5. Algorithms designed 
to exploit this particular hypothesis for classes of Boolean functions have proved to 
be quite useful in practice [5]. 

Kearns and Mansour show [6] that the key to using the weak learning hypothesis 
for decision tree learning is the use of an index function I : [0, 1] ~ [0,1] where 
I(q) ~ 1, I(q) ~ min(q, (1- q)) and where I(T) is defined to be L:lEL(T) PlI(ql). 
Note that these conditions imply that i(T) ~ I(T). For any sample W let qw be 
the fraction of pairs (x, f(x)) E W such that f(x) = 1. For any h E 1i let Th be 
the decision tree consisting of a single internal node with branching function h plus 
a leaf for each member of IRh I. Let Iw (Th) denote the value of I(Th) as measured 
with respect to the sample W. Let ~ (W, h) denote I (qW ) - Iw (Th). The quantity 
~(W, h) is the reduction in the index for sample W achieved by introducing a single 
branch. Also note that Pt~(Sl, h) is the reduction in I(T) when the leaf f is replaced 
by the branch h. Kearns and Mansour [6] prove the following lemma. 

Lemma 3.1 (Kearns & Mansour) Assuming the c5-weak learning hypothesis for 
1i2, and taking I(q) to be 2Jq(1- q), we have that for any sample W there exists 
an h E 1i2 such that ~(W,h) ~ ~:I(qw). 

This lemma motivates the following definition. 

Definition 1 We say that 1i2 and I satisfies the "I-weak tree-growth hypothesis if 
for any sample W from X there exists an hE 1i2 such that ~(W, h) ~ "II(qw). 

Lemma 3.1 states, in essence, that the classical weak learning hypothesis implies the 
weak tree growth hypothesis for the index function I(q) = 2J q(l - q). Empirically, 
however, the weak tree growth hypothesis seems to hold for a variety of index 
functions that were already used for tree growth prior to the work of Kearns and 
Mansour. The Ginni index I(q) = 4q(1 - q) is used in CART [1] and the entropy 
I(q) = -q log q - (1- q) log(l- q) is used in C4.5 [7]. It has long been empirically 
observed that it is possible to make steady progress in reducing I(T) for these 
choices of I while it is difficult to make steady progress in reducing i(T). 

We now define a simple binary branching procedure. For a given training set S 
and target tree size s this algorithm grows a tree with ITI = s. In the algorithm 



Boosting with Multi-Way Branching in Decision Trees 303 

o denotes the trivial tree whose root is a leaf node and Tl h denotes the result of , 
replacing the leaf l with the branching function h and a new leaf for each element 
of Rh. 

T=0 
WHILE (ITI < s) DO 

l f- argmaxl 'ftl1(til) 
h f- argmaxhEl£:l~(Sl' h) 
T f- Tl,h; 

END-WHILE 

We now define e(n) to be the quantity TI~:ll(l-;). Note that e(n) ~ TI~:/ e-7 = 
~ .. -l /" e--Y Wi"'l 1 S < e--Y Inn = n--Y. 

Theorem 3.2 (Kearns & Mansour) 1f1l2 and I satisfy the ,-weak tree growth 
hypothesis then the binary branching procedure produces a tree T with i(T) ~ I(T) ~ 
e(ITI) ~ ITI--Y· 

Proof: The proof is by induction on the number of iterations of the procedure. 
We have that 1(0) ~ 1 = e(l) so the initial tree immediately satisfies the condi
tion. We now assume that the condition is satisfied by T at the begining of an 
iteration and prove that it remains satisfied by Tl,h at the end of the iteration. 
Since I(T) = LlET Ih1(til) we have that the leaf l selected by the procedure is 
such that Pl1(til) 2: II~)· By the ,-weak tree growth assumption the function 
h selected by the procedure has the property that ~(Sl, h) 2: ,1(ql). We now 

have that I(T) - I(Tl,h) = Pl~(Sl' h) 2: P1I1(til) 2: ,II?il " This implies that 
I(Tl ,h) ~ I(T) - rh1(T) = (1- j;)I(T) ~ (1- rh)e(ITI) = e(ITI + 1) = e(ITl,hl). 
o 

4 Statement of the Main Theorem 

We now construct a tree-growth algorithm that selects multi-way branching func
tions. As with many weak learning hypotheses, the ,-weak tree-growth hypothesis 
can be viewed as defining a game between the learner and an adversary. Given a 
tree T the adversary selects a set of branching functions allowed at each leaf of the 
tree subject to the constraint that at each leaf l the adversary must provide a binary 
branching function h with ~(Sl' h) 2: ,1(til). The learner then selects a leaf land 
a branching function h and replaces T by Tl,h. The adversary then again selects 
a new set of options for each leaf subject to the ,-weak tree growth hypothesis. 
The proof of theorem 3.2 implies that even when the adversary can reassign all op
tions at every move there exists a learner strategy, the binary branching procedure, 
guaranteed to achieves a final error rate of ITI--Y. 

Of course the optimal play for the adversary in this game is to only provide a single 
binary option at each leaf. However, in practice the "adversary" will make mistakes 
and provide options to the learner which can be exploited to achieve even lower 
error rates. Our objective now is to construct a strategy for the learner which can 
exploit multi-way branches provided by the adversary. 

We first say that a branching function h is acceptable for tree T and target size 



304 Y. Mansour and D. MeAl/ester 

s if either IRhl = 2 or ITI < e(IRh!)s"Y/(2IRh!). We also define g(k) to be the 
quantity (1 - e(k»/"Y. It should be noted that g(2) = 1. It should also be noted 
that e( k) '" e -'Y Ink and hence for "Y In k small we have e( k) '" 1 - "Y In k and hence 
g(k) '" Ink. We now define the following multi-branch tree growth procedure. 

T=0 
WHILE (ITI < s) DO 

l +- argm~ Ptl(qt) 
h +- argmaxhEll, h acceptable for T and s ~(St, h)/g(IRhl) 
T +- Tt,h; 

END-WHILE 

A run of the multi-branch tree growth procedure will be called "Y-boosting if at each 
iteration the branching function h selected has the property that ~(St, h) / g(lRh I) ~ 
"YI(qt). The "Y-weak tree growth hypothesis implies that ~(St,h)/g(IRhl) ~ 
"YI(qt)/g(2) = "YI(qt). Therefore, the "Y-weak tree growth hypothesis implies that 
every run of the multi-branch growth procedure is "Y-bootsing. But a run can be 
"Y-bootsing by exploiting mutli-way branches even when the "Y-weak tree growth 
hypothesis fails. The following is the main theorem of this paper. 

Theorem 4.1 1fT is produced by a "Y-boosting run of the multi-branch tree-growth 
procedure then leT) ~ e(ITI) ~ ITI-'Y· 

5 Proof of Theorem 4.1 

To prove the main theorem we need the concept of a visited weighted tree, or VW
tree for short. A VW-tree is a tree in which each node m is assigned both a rational 
weight Wm E [0,1] and an integer visitation count Vm ~ 1. We now define the 
following VW tree growth procedure. In the procedure Tw is the tree consisting of 
a single root node with weight wand visitation count 1. The tree Tt.w1 .... . w/c is the 
result of inserting k new leaves below the leaf l where the ith new leaf has weight 
Wi and new leaves have visitation count 1. 

W +- any rational number in [0,1] 
T+-Tw 
FOR ANY NUMBER OF STEPS REPEAT THE FOLLOWING 

l +- argmaxt e(tI:~wl 
Vt +- Vt + 1 
OPTIONALLY T +- Tt.Wl .. .. ,W lll WITH WI + .. . Wtll ~ e(vt)wt 

We first prove an analog of theorem 3.2 for the above procedure. For a VW-tree T 
we define ITI to be LtEL(T) Vt and we define leT) to be LtEL(T) e( Vt)Wt. 

Lemma 5.1 The VW procedure maintains the invariant that leT) ~ e(ITI). 

Proof: The proof is by induction on the number of iterations of the algorithm. 
The result is immediate for the initial tree since eel) = 1. We now assume that 
leT) ~ e(IT!) at the start of an iteration and show that this remains true at the 
end of the iteration. 



Boosting with Multi-Way Branching in Decision Trees 305 

We can associate each leaf l with Vt "subleaves" each of weight e(vt)wt/Vt. We have 
that ITI is the total number of these subleaves and I(T) is the total weight of these 
subleaves. Therefore there must exist a subleaf whose weight is at least I(T)/ITI. 
Hence there must exist a leaf l satisfying e(vt)wt/Vt 2': I(T)/ITI. Therefore this 
relation must hold of the leaf l selected by the procedure. 

Let T' be the tree resulting from incrementing Vt. We now have I(T) - I(T') = 
e(vt)wt- e(vt + l)wt = e(vt)wt- (1- ;;)e(vt)wt = ;;e(vt)wt 2': "/I~)' So we have 
I(T') ~ (1 - ffl )I(T) ~ (1 - ffl )e(ITI) = e(IT'I). 

Finally, if the procedure grows new leaves we have that the I(T) does not increase 
and that ITI remains the same and hence the invariant is maintained. 0 

For any internal node m in a tree T let C(m) denote the set of nodes which are 
children of m. A VW-tree will be called locally-well-formed if for every internal 
node m we have that Vm = IC(m)l, that I:nEC(m) Wn ~ e(IC(m)l)wm . A VW-tree 
will be called globally-safe ifmaxtEL(T) e(vt)wt/Vt ~ millmEN(T) e(vt-1)wt/(vt-1) 
where N(T) denotes the set of internal nodes of T. 

Lemma 5.2 If T is a locally well-formed and globally safe VW-tree, then T is a 
possible output of the VW growth procedure and therefore I(T) ~ e(ITI). 

Proof: Since T is locally well formed we can use T as a "template" for making 
nondeterministic choices in the VW growth procedure. This process is guaranteed 
to produce T provided that the growth procedure is never forced to visit a node 
corresponding to a leaf of T. But the global safety condition guarantees that any 
unfinished internal node of T has a weight as least as large as any leaf node of T. 
o 

We now give a way of mapping ?i-trees into VW-trees. More specifically, for any 
?i-tree T we define VW(T) to be the result of assigning each node m in T the weight 
PmI(qm), each internal node a visitation count equal to its number of children, and 
each leaf node a visitation count equal to 1. We now have the following lemmas. 

Lemma 5.3 If T is grown by a I-boosting run of the multi-branch procedure then 
VW(T) is locally well-formed. 

Proof: Note that the children of an internal node m are derived by selecting 
a branching function h for the node m. Since the run is I-boosting we have 
~(St, h)/g(IRhi) 2': II(qt). Therefore ~(St, h) = (I(tit) - 1St (n)) 2': I(tit)(l -
e(IRhl)). This implies that Ist(Th) ~ e(IRhDI(qt). Multiplying by Pt and trans
forming the result into weights in the tree VW(T) gives the desired result. 0 

The following lemma now suffices for theorem 4.1. 

Lemma 5.4 If T is grown by a I-boosting run of the multi-branch procedure then 
VW(T) is globally safe. 

Proof: First note that the following is an invariant of a I-boosting run of the 
multi-branch procedure. 

max Wt < min Wt 
tEL(VW(T)) - mEN(VW(T)) 



306 Y. Mansour and D. MeAl/ester 

The proof is a simple induction on ,-boosting tree growth using the fact that the 
procedure always expands a leaf node of maximal weight. 

We must now show that for every internal node m and every leaf £ we have that 
Wi ~ e(k -1)wm/(k -1) where k is the number of children of m. Note that if k = 2 
then this reduces to Wi ~ Wm which follows from the above invariant. So we can 
assume without loss of generality that k > 2. Also, since e( k) / k < e( k - 1) / (k - 1), 
it suffices to show that Wi ~ e(k)wm/k. 

Let m be an internal node with k > 2 children and let T' be the tree at the time 
m was selected for expansion. Let Wi be the maximum weight of a leaf in the final 
tree T. By the definition of the acceptability condition, in the last s/2 iterations 
we are performing only binary branching. Each binary expansion reduces the index 
by at least , times the weight of the selected node. Since the sequence of nodes 
selected in the multi-branch procedure has non-increasing weights, we have that in 
any iteration the weight of the selected node is at least Wi . Since there are at least 
s/2 binary expansions after the expansion of m, each of which reduces I by at least 
,Wi, we have that s,wd2 ~ I(T') so Wi ~ 2I(T')/(/s). The acceptability condition 
can be written as 2/(/s) ~ e(k)/(kIT'1) which now yields WI ~ I(T')e(k)/(kIT'I). 
But we have that I(T')/IT'I ~ Wm which now yields WI ~ e(k)wm/k as desired. 0 

References 

[1] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. 
Classification and Regression Trees. Wadsworth International Group, 1984. 

[2] Tom Dietterich, Michael Kearns and Yishay Mansour. Applying the Weak 
Learning Framework to understand and improve C4.5. In Proc. of Machine 
Learning, 96-104, 1996. 

[3] Yoav Freund. Boosting a weak learning algorithm by majority. Information and 
Computation, 121(2):256-285, 1995. 

[4] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of 
on-line learning and an application to boosting. In Computational Learning 
Theory: Second European Conference, EuroCOLT '95, pages 23-37. Springer
Verlag, 1995. 

[5] Yoav Freund and Robert E. Schapire. Experiments with a new boosting al
gorithm. In Machine Learning: Proceedings of the Thirteenth International 
Conference, pages 148-156, 1996. 

[6] Michael Kearns and Yishay Mansour. On the boosting ability of top-down 
decision tree learning. In Proceedings of the Twenty-Eighth ACM Symposium 
on the Theory of Computing, pages 459-468,1996. 

[7] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 
1993. 

[8] Robert E. Schapire. The strength of weak learnability. Machine Learning, 
5(2):197-227, 1990. 


