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Abstract 

A neural model is described which uses oscillatory correlation to 
segregate speech from interfering sound sources. The core of the model 
is a two-layer neural oscillator network. A sound stream is represented 
by a synchronized population of oscillators, and different streams are 
represented by desynchronized oscillator populations. The model has 
been evaluated using a corpus of speech mixed with interfering sounds, 
and produces an improvement in signal-to-noise ratio for every mixture. 

1 Introduction 

Speech is seldom heard in isolation: usually, it is mixed with other environmental sounds. 
Hence, the auditory system must parse the acoustic mixture reaching the ears in order to 
retrieve a description of each sound source, a process termed auditory scene analysis 
(ASA) [2] . Conceptually, ASA may be regarded as a two-stage process . The first stage 
(which we term 'segmentation') decomposes the acoustic stimulus into a collection of 
sensory elements. In the second stage ('grouping'), elements that are likely to have arisen 
from the same environmental event are combined into a perceptual structure called a 
stream. Streams may be further interpreted by higher-level cognitive processes. 

Recently, there has been a growing interest in the development of computational systems 
that mimic ASA [4], [1], [5]. Such computational auditory scene analysis (CASA) 
systems are inspired by auditory function but do not model it closely; rather, they employ 
symbolic search or high-level inference engines. Although the performance of these 
systems is encouraging, they are no match for the abilities of a human listener; also, they 
tend to be complex and computationally intensive. In short, CASA currently remains an 
unsolved problem for real-time applications such as automatic speech recognition. 

Given that human listeners can segregate concurrent sounds with apparent ease, 
computational systems that are more closely modelled on the neurobiological mechanisms 
of hearing may offer a performance advantage over existing CAS A systems. This 
observation - together with a desire to understand the neurobiological basis of ASA - has 
led some investigators to propose neural network models of ASA. Most recently, Brown 
and Wang [3] have given an account of concurrent vowel separation based on oscillatory 
correlation. In this framework, oscillators that represent a perceptual stream are 
synchronized (phase locked with zero phase lag), and are desynchronized from oscillators 
that represent different streams [8]. Evidence for the oscillatory correlation theory comes 
from neurobiological studies which report synchronised oscillations in the auditory, visual 
and olfactory cortices (see [10] for a review). 
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In this paper, we propose a neural network model that uses oscillatory correlation as the 
underlying neural mechanism for ASA; streams are formed by synchronizing oscillators 
in a two-dimensional time-frequency network. The model is evaluated on a task that 
involves the separation of two time-varying sounds. It therefore extends our previous 
study [3], which only considered the segregation of vowel sounds with static spectra. 

2 Model description 

The input to the model consists of a mixture of speech and an interfering sound source, 
sampled at a rate of 16 kHz with 16 bit resolution. This input signal is processed in four 
stages described below (see [10] for a detailed account). 

2.1 Peripheral auditory processing 

Peripheral auditory frequency selectivity is modelled using a bank of 128 gammatone 
filters with center frequencies equally distributed on the equivalent rectangular bandwidth 
(ERB) scale between 80 Hz and 5 kHz [1]. Subsequently, the output of each filter is 
processed by a model of inner hair cell function. The output of the hair cell model is a 
probabilistic representation of auditory nerve firing activity. 

2.2 Mid-level auditory representations 

Mechanisms similar to those underlying pitch perception can contribute to the perceptual 
separation of sounds that have different fundamental frequencies (FOs) [3]. Accordingly, 
the second stage of the model extracts periodicity information from the simulated auditory 
nerve firing patterns. This is achieved by computing a running autocorrelation of the 
auditory nerve activity in each channel , forming a representation known as a correlogram 
[1], [5]. At time step j, the autocorrelation A(iJ,'t) for channel i with time lag 't is given by: 

K-I 

A(i, j,'t) = I. r(i,j-k)r(i,j-k-'t)w(k) (1) 
k=O 

Here, r is the output of the hair cell model and w is a rectangular window of width K time 
steps. We use K = 320, corresponding to a window width of 20 ms. The autocorrelation lag 
't is computed in L steps of the sampling period between 0 and L-1 ; we use L = 201, 
corresponding to a maximum delay of 12.5 ms. Equation (1) is computed for M time 
frames, taken at 10 ms intervals (i .e., at intervals of 160 steps of the time indexj). 

For periodic sounds, a characteristic 'spine' appears in the correlogram which is centered 
on the lag corresponding to the stimulus period (Figure 1A). This pitch-related structure 
can be emphasized by forming a 'pooled' correlogram s(j,'t), which exhibits a prominent 
peak at the delay corresponding to perceived pitch: 

N 

s(j, 't) = I. A (i, j, 't) (2) 
i = I 

It is also possible to extract harmonics and formants from the correlogram, since 
frequency channels that are excited by the same acoustic component share a similar 
pattern of periodicity. Bands of coherent periodicity can be identified by cross-correlating 
adjacent correlogram channels; regions of high correlation indicate a harmonic or formant 
[1] . The cross-correlation C(iJ) between channels i and i+ 1 at time frame j is defined as: 

L-I 

C(i,j) = IL.A(i,j, 't)A(i+l,j, 't) (l~i~N-l) (3) 
t=O 

Here, A(i, j , 't) is the autocorrelation function of (1) which has been normalized to have 
zero mean and unity variance. A typical cross-correlation function is shown in Figure 1A. 
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2.3 Neural oscillator network: overview 

Segmentation and grouping take place within a two-layer oscillator network (Figure IB). 
The basic unit of the network is a single oscillator, which is defined as a reciprocally 
connected excitatory variable x and inhibitory variable y [7]. Since each layer of the 
network takes the form of a time-frequency grid, we index each oscillator according to its 
frequency channel (i) and time frame (j): 

Xij = 3xij-xt+2-Yij+lij+Sij+P 

Yij = £(y(1 + tanh(xi/~» - Yij) 

(4a) 

(4b) 

Here, Ii} represents external input to the oscillator, Si} denotes the coupling from other 
oscillators in the network, c, 'Y and ~ are parameters, and p is the amplitude of a Gaussian 
noise term. If coupling and noise are ignored and Ii} is held constant, (4) defines a 
relaxation oscillator with two time scales. The x-nullcline, i.e. Xii' = 0, is a cubic function 
and the y-nullcline is a sigmoid function. If Ii" > 0, the two nul clines intersect only at a 
point along the middle branch of the cubic with ~ chosen small. In this case, the oscillator 
exhibits a stable limit cycle for small values of c, and is referred to as enabled. The limit 
cycle alternates between silent and active phases of near steady-state behaviour. 
Compared to motion within each phase, the alternation between phases takes place 
rapidly, and is referred to as jumping. If Ii" < 0, the two nullclines intersect at a stable fixed 
point. In this case, no oscillation occurs. Hence, oscillations in (4) are stimulus-dependent. 

2.4 Neural oscillator network: segment layer 

In the first layer of the network, segments are formed - blocks of synchronised oscillators 
that trace the evolution of an acoustic component through time and frequency. The first 
layer is a two-dimensional time-frequency grid of oscillators with a global inhibitor (see 
Figure IB). The coupling term Sij in (4a) is defined as 

Sij = ~ Wij ,k/H(xk/-ex )- WzH(z-ez) (5) 
kl E N(i, j) 

where H is the Heaviside function (i.e., H(x) = I for x ~ 0, and zero otherwise), Wij,kl is the 
connection weight from an oscillator (iJ) to an oscillator (k,/) and N(iJ) is the four nearest 
neighbors of (iJ). The threshold ex is chosen so that an oscillator has no influence on its 
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Figure I: A. Correlogram of a mixture of speech and trill telephone, taken 450 ms after the 
start of the stimulus. The pooled correlogram is shown in the bottom panel, and the cross
correlation function is shown on the right. B. Structure of the two-layer oscillator network. 
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neighbors unless it is in the active phase. The weight of neighboring connections along the 
time axis is uniformly set to 1. The connection weight between an oscillator (iJ) and its 
vertical neighbor (i+lJ) is set to 1 if C(iJ) exceeds a threshold Se; otherwise it is set to O. 
Wz is the weight of inhibition from the global inhibitor z, defined as 

(6) 

where <roo = 1 if xi} 2:: Sz for at least one oscillator (iJ), and <roo = 0 otherwise. Hence Sz is a 
threshold. If <roo = 1, z ~ 1. 

Small segments may form which do not correspond to perceptually significant acoustic 
components. In order to remove these noisy fragments, we introduce a lateral potential Pi} 

for oscillator (iJ), defined as [11]: 

Pij = (1 - Pij)H[ L.. H(xkl - ex) - epJ - £Pij (7) 
kleNp(i,j) 

Here, Sp is a threshold. Nf(iJ) is called the potential neighborhood of (iJ), which is chosen 
to be (iJ-l) and (iJ+l). I both neighbors of (iJ) are active, Pi} approaches 1 on a fast time 
scale; otherwise, Pij relaxes to 0 on a slow time scale determined by c. 

The lateral potential plays its role by gating the input to an oscillator. More specifically, 
we replace (4a) with 

iij = 3xij-x:j +2-Yij+ lijH(pij-e) +Sij+P (4a') 

With Pij initialized to 1, it follows that Pij will drop below the threshold S unless the 
oscillator (iJ) receives excitation from its entire potential neighborhood. Given our choice 
of neighborhood in (5), this implies that a segment must extend for at least three 
consecutive time frames. Oscillators that are stimulated but cannot maintain a high 
potential are relegated to a discontiguous 'background' of noisy activity. 

An oscillator (iJ) is stimulated if its corresponding input lij > O. Oscillators are stimulated 
only if the energy in their corresponding correlogram channel exceeds a threshold Sa. It is 
evident from (1) that the energy in a correlogram channel i at time j corresponds to 
A(iJ,O); thus we set Ii} = 0.2 if A(iJ,O) > Sa' and Iij = -5 otherwise. 

Figure 2A shows the segmentation of a mixture of speech and trill telephone. The network 
was simulated by the LEGION algorithm [8], producing 94 segments (each represented by 
a distinct gray level) plus the background (shown in black). For convenience we show all 
segments together in Figure 2A, but each actually arises during a unique time interval. 
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Figure 2: A. Segments formed by the first layer of the network for a mixture of speech and 
trill telephone. B. Categorization of segments according to FO. Gray pixels represent the set 
P, and white pixels represent regions that do not agree with the FO. 
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2.5 Neural oscillator network: grouping layer 

The second layer is a two-dimensional network of laterally coupled oscillators without 
global inhibition. Oscillators in this layer are stimulated if the corresponding oscillator in 
the first layer is stimulated and does not form part of the background. Initially, all 
oscillators have the same phase, implying that all segments from the first layer are 
allocated to the same stream. This initialization is consistent with psychophysical 
evidence suggesting that perceptual fusion is the default state of auditory organisation [2]. 
In the second layer, an oscillator has the same form as in (4), except that Xu is changed to: 

iii = 3xij - �x�~� + 2 - Yij + Ii) 1 + !1H(Pij - a)] + Sij + P (4a") 

Here, Jl is a small positive parameter; this implies that an oscillator with a high lateral 
potential gets a slightly higher external input. We choose NpCiJ) and aR so that oscillators 
which correspond to the longest segment from the first layer are the first to jump to the 
active phase. The longest segment is identified by using the mechanism described in [9]. 

The coupling term in (4a") consists of two types of coupling: 
e v 

Sij = Sij + Sij (8) 

Here, S;j represents mutual excitation between oscillators within each segment. We set 
�S�~� = 4 if the active oscillators from the same segment occupy more than half of the 
length of the segment; otherwise �S�~�j� = 0.1 if there is at least one active oscillator from the 
same segment. 

The coupling term S; denotes vertical connections between oscillators corresponding to 
different frequency channels and different segments, but within the same time frame. At 
each time frame, an FO is estimated from the pooled correlogram (2) and this is used to 
classify frequency channels into two categories: a set of channels, P, that are consistent 
with the FO, and a set of channels that are not (Figure 2B). Given the delay 'tm at which the 
largest peak occurs in the pooled correlogram, for each channel i at time frame j, i E P if 

AU, j, 'tm )/ A(i, j, 0) > ad (9) 

Since AUJ,O) is the energy in correlogram channel i at time j, (9) amounts to classification 
on the basis of an energy threshold. We use ad = 0.95. The delay 'tm can be found by using 
a winner-take-all network, although for simplicity we currently apply a maximum selector. 
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Figure 3: A. Snapshot showing the activity of the second layer shortly after the start of 
simulation. Active oscillators (white pixels) correspond to the speech stream. B. Another 
snapshot, taken shortly after A. Active oscillators correspond to the telephone stream. 




