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Abstract

Fishers linear discriminant analysis (LDA) is a classical multivari-
ate technique both for dimension reduction and classification. The
data vectors are transformed into a low dimensional subspace such
that the class centroids are spread out as much as possible. In
this subspace LDA works as a simple prototype classifier with lin-
ear decision boundaries. However, in many applications the linear
boundaries do not adequately separate the classes. We present a
nonlinear generalization of discriminant analysis that uses the ker-
nel trick of representing dot products by kernel functions. The pre-
sented algorithm allows a simple formulation of the EM-algorithm
in terms of kernel functions which leads to a unique concept for un-
supervised mixture analysis, supervised discriminant analysis and
semi-supervised discriminant analysis with partially unlabelled ob-
servations in feature spaces.

1 Introduction

Classical linear discriminant analysis (LDA) projects N data vectors that belong to
¢ different classes into a (¢ — 1)—dimensional space in such way that the ratio of be-
tween group scatter Sp and within group scatter Sw is maximized [1]. LDA formally
consists of an eigenvalue decomposition of Sy Sp leading to the so called canonical
variates which contain the whole class specific information in a (¢ — 1)-dimensional
subspace. The canonical variates can be ordered by decreasing eigenvalue size in-
dicating that the first variates contain the major part of the information. As a
consequence, this procedure allows low dimensional representations and therefore
a visualization of the data. Besides from interpreting LDA only as a technique for
dimensionality reduction, it can also be seen as a multi-class classification method:
the set of linear discriminant functions define a partition of the projected space into
regions that are identified with class membership. A new observation x is assigned
to the class with centroid closest to x in the projected space.

To overcome the limitation of only linear decision functions some attempts have
been made to incorporate nonlinearity into the classical algorithm. HASTIE et al.
[2] introduced the so called model of Flexible Discriminant Analysis: LDA is refor-
mulated in the framework of linear regression estimation and a generalization of this
method is given by using nonlinear regression techniques. The proposed regression
techniques implement the idea of using nonlinear mappings to transform the input
data into a new space in which again a linear regression is performed. In real world
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applications this approach has to deal with numerical problems dve to the dimen-
sional explosion resulting from nonlinear mappings. In the recent years approaches
that avoid such ezplicit mappings by using kernel functions have become popular.
The main idea is to construct algorithms that only afford dot products of pattern
vectors which can be computed efficiently in high-dimensional spaces. Examples of
this type of algorithms are the Support Vector Machine [3] and Kernel Principal
Component Analysis [4].

In this paper we show that it is possible to formulate classical linear regression
and therefore also linear discriminant analysis exclusively in terms of dot products.
Therefore, kernel methods can be used to construct a nonlinear variant of dis-
criminant analysis. We call this technique Kernel Discriminant Analysis (KDA).
Contrary to a similar approach that has been published recently [5], our algorithm is
a real multi-class classifier and inherits from classical LDA the convenient property
of data visualization.

2 Review of Linear Discriminant Analysis

Under the assumption of the data being centered (i.e. 3, x; = 0) the scatter ma-
trices Sp and Sy are defined by
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where n; is the number of patterns :1:(’ ) that beIOng to class j.

LDA chooses a transformation ma.truc V] {;fhag mVa,mmlzes the objective function
B

The columns of an optimal V' are the genera.]ized eigenvectors that correspond to

the nonzero eigenvalues in Sgv; = A\; Swv;.

In [6] and [7] we have shown, that the standard LDA algorithm can be restat-

ed exclusively in terms of dot products of input vectors. The final equation is an

eigenvalue equation in terms of dot product matrices which are of size N x N. Since

the solution of high-dimensional generalized eigenvalue equations may cause numer-

ical problems (N may be large in real world applications), we present an improved

algorithm that reformulates discriminant analysis as a regression problem. More-

over, this version allows a simple implementation of the EM-algorithm in feature

spaces.

3 Linear regression analysis

In this section we give a brief review of linear regression analysis which we use as
“building block” for LDA. The task of linear regression analysis is to approximate
the regression function by a linear function

r(z) = EQY|X =z)~c+x!B. (4)
on the ba.ms of a sample (y1,21), **,(yn,ZN). Let now y denote the vector
(y1,--.,yn)T and X denote the data matnx which rows are the input vectors.

Using a quadratic loss function, the optimal parameters ¢ and 8 are chosen to
minimize the average squared re31dua.1

ASR= N7y -cin+XB|" +BT0B. (5)
1 denotes a N-vector of ones, §2 denotes a ridge-type penalty matrix 2 = el which

penalizes the coefficients of 3. Assuming the data being centered, i.e Eﬁil xz; =0,
the parameters of the regression function are given by:

N
= N*1 Zi___l Yi =: ty s B=(XTX +e)'XTy. (6)
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4 LDA by optimal scoring

In this section the LDA problem is linked to linear regression using the framework
of penalized optimal scoring. We give an overview over the detailed derivation in
[2] and [8]. Considering again the problem with ¢ classes and N data vectors,
the class-memberships are represented by a categorical response variable G with
¢ levels. It is useful to code the n responses in terms of the indicator matrix
Z: Z;; = 1, if the i-th data vector belongs to class j, and 0 otherwise. The point
of optimal scoring is to turn categorical variables into quantitative ones by assigning
scores to classes: the score vector € assigns the real number 8; to the j-th level of
G. The vector Z6@ then represents a vector of scored training data and is regressed
onto the data matrix X. The simultaneous estimation of scores and regression
coefficients constitutes the optimal scoring problem: minimize the criterion

ASR(0,8) = N7'[||Zz6 — XB||* + BTQp] (7

under the constraint %|[Z6||> = 1. According to (6), for a given score @ the
minimizing 3 is given by

Bos=(XTX+ Q) 'Xx7280, (8)
and the partially minimized criterion becomes:
min ASR(6,8) =1~ N~0TZTM(0)Z6, (9)

where M () = X(XTX +0)~1 X7 denotes the regularized hat or smoother matrix.
Minimizing of (9) under the constraint +||Z6||* = 1 can be performed by the
following procedure:

1. Choose an initial matrix ©g satisfying the constraint N0 2720, = I
and set O5 = Z0
2. Run a multi-response regression of ©; onto X: 0* = M(Q)O; = XB
where B is the mat.rlx of regression coefﬁments
3. Elgenanalyze 80 @0 to obtain the optimal scores, and update the matrix of
regression coefficients: B* = BW, with W being t.he matrix of eigenvectors.

It can be shown, that the final matrix B* is, up to a diagonal scale matrix, equivalent
to the matrix of LDA-vectors, see [8].

5 Ridge regression using only dot products

The penalty matrix © in (5) assures that the penalized d x d covariance matrix
¥ = XTX + ¢l is a symmetric nonsingular matrix. Therefore, it has d eigenvectors
e; with accomplished positive eigenvalues 7; such that the following equations hold:

5 N . d 1
T of _ T
Se; = E jo1 Ti%j €i+eei = miei, rl= E et oy 485 (10)

The first equation implies that the first ! leading eigenvectors e; with eigenvalues
v > € have an expansion in terms of the input vectors. Note that [ is the number
of nonzero eigenvalues of the unpenalized covariance matrix X7 X. Together with
(6), it follows for the general case, when the dimensionality d may extend [, that 3
can be written as the sum of two terms: an expansion in terms of the vectors x;
with coefficients o; and a similar expansion in terms of the remaining eigenvectors:

N d d

= = e:=XxT O
B=3 _mi+), . Ge=XTat+d _  &e; (11)
with @ = (a1 ---a,)T. However, the last term can be dropped, since every eigen-
vector ej, j =1 +1,...,d is orthogonal to every vector x; and does not influence

the value of the regression function (4).
The problem of penalized linear regression can therefore be stated as minimizing
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ASR(a) = N7'[|ly - XXTa|* + aTXQXTq]. (12)
A stationary vector « is determined by
a=(XXT+0) . (13)

Let now the dot product matriz K be defined by K;; = z7 x; and let for a given test
point (x;) the dot product vector k; be defined by k; = Xx,. With this notation
the regression function of a test point (x;) reads

r(zi) = py + ki (K +€l) . (14)

This equation requires only dot products and we can apply the kernel trick. The
final equation (14), up to the constant term p,, has also been found by SAUNDERS et
al., [9]. They restated ridge regression in dual variables and optimized the resulting
criterion function with a lagrange multiplier technique. Note that our derivation,
which is a direct generalization of the standard linear regression formalism, leads in
a natural way to a class of more general regression functions including the constant
term.

6 LDA using only dot products

Setting 8 = X7« as in (11) and using the notation of section 5, for a given score
@ the optimal vector « is given by:

aos = (XXT + Q)71 26. (15)
Analogous to (9), the partially minimized criterion becomes:
min ASR(0,a) =1 - N80T 2T M(Q)Z8, (16)

with ;
M) =XXT(XXT+Q) ' =K(K +eI)™.

To minimize (16) under the constraint +-||Z6||> = 1 the procedure described in

section 4 can be used when M () is substituted by M(Q). The matrix Y which
rows are the input vectors projected onto the column vectors of B* is given by:
Y =XB*=K(K+el)'ZO,W. (17)

Note that again the dot product matrix K is all that is needed to calculate Y.
7 The kernel trick

The main idea of constructing nonlinear algorithms is to apply the linear methods
not in the space of observations but in a feature space F that is related to the former
by a nonlinear mapping ¢ : RY = F, & — ¢(x).

Assuming that the mapped data are centered in F,i.e. 3 -, ¢(z;) = 0, the present-
ed algorithms remain formally unchanged if the dot product matrix K is computed
in F: K;; = (¢(x;) - ¢(x;)). As shown in [4], this assumption can be dropped by
writing ¢ instead of the mapping ¢: é(x;) = ¢p(x;) — % ().
Computation of dot products in feature spaces can be done efficiently by using k-
ernel functions k(z;,x;) [3]: For some choices of k there exists a mapping ¢ into
some feature space F such that k acts as a dot product in F. Among possible
kernel functions there are e.g. Radial Basis Function (RBF) kernels of the form

k(x,y) = exp(—|lz — yl[*/c).

8 The EM-algorithm in feature spaces

LDA can be derived as the maximum likelihood method for normal populations
with different means and common covariance matrix T (see [11]). Coding the class
membership of the observations in the matrix Z as in section 4, LDA maximizes
the (complete data) log-likelihood function












