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Abstract 

We describe a method for learning an overcomplete set of basis 
functions for the purpose of modeling sparse structure in images. 
The sparsity of the basis function coefficients is modeled with a 
mixture-of-Gaussians distribution. One Gaussian captures non­
active coefficients with a small-variance distribution centered at 
zero, while one or more other Gaussians capture active coefficients 
with a large-variance distribution. We show that when the prior is 
in such a form, there exist efficient methods for learning the basis 
functions as well as the parameters of the prior. The performance 
of the algorithm is demonstrated on a number of test cases and 
also on natural images. The basis functions learned on natural 
images are similar to those obtained with other methods, but the 
sparse form of the coefficient distribution is much better described. 
Also, since the parameters of the prior are adapted to the data, no 
assumption about sparse structure in the images need be made a 
priori, rather it is learned from the data. 

1 Introduction 

The general problem we address here is that of learning a set of basis functions 
for representing natural images efficiently. Previous work using a variety of opti­
mization schemes has established that the basis functions which best code natural 
images in terms of sparse, independent components resemble a Gabor-like wavelet 
basis in which the basis functions are spatially localized, oriented and bandpass in 
spatial-frequency [1, 2, 3, 4]. In order to tile the joint space of position, orienta­
tion, and spatial-frequency in a manner that yields useful image representations, 
it has also been advocated that the basis set be overcomplete [5], where the num­
ber of basis functions exceeds the dimensionality of the images being coded. A 
major challenge in learning overcomplete bases, though, comes from the fact that 
the posterior distribution over the coefficients must be sampled during learning. 
When the posterior is sharply peaked, as it is when a sparse prior is imposed, then 
conventional sampling methods become especially cumbersome. 
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One approach to dealing with the problems associated with overcomplete codes and 
sparse priors is suggested by the form of the resulting posterior distribution over the 
coefficients averaged over many images. Shown below is the posterior distribution of 
one of the coefficients in a 4 x's overcomplete representation. The sparse prior that 
was imposed in learning was a Cauchy distribution and is overlaid (dashed line). It 
would seem that the coefficients do not fit this imposed prior very well, and instead 
want to occupy one of two states: an inactive state in which the coefficient is set 
nearly to zero, and an active state in which the coefficient takes on some significant 
non-zero value along a continuum. This suggests that the appropriate choice of 
prior is one that is capable of capturing these two discrete states. 
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Figure 1: Posterior distribution of coefficients with Cauchy prior overlaid. 

Our approach to modeling this form of sparse structure uses a mixture-of-Gaussians 
prior over the coefficients. A set of binary or ternary state variables determine 
whether the coefficient is in the active or inactive state, and then the coefficient 
distribution is Gaussian distributed with a variance and mean that depends on 
the state variable. An important advantage of this approach, with regard to the 
sampling problems mentioned above, is that the use of Gaussian distributions allows 
an analytical solution for integrating over the posterior distribution for a given 
setting of the state variables. The only sampling that needs to be done then is over 
the binary or ternary state variables. We show here that this problem is a tractable 
one. This approach differs from that taken previously by Attias [6] in that we do 
not use variational methods to approximate the posterior, but rather we rely on 
sampling to adequately characterize the posterior distribution over the coefficients. 

2 Mixture-of-Gaussians model 

An image, I(x, y), is modeled as a linear superposition of basis functions, ¢i(X, y), 
with coefficients ai, plus Gaussian noise II( x, y) : 

(1) 

In what follows this will be expressed in vector-matrix notation as 1= q. a + II. 
The prior probability distribution over the coefficients is factorial, with the distri­
bution over each coefficient ai modeled as a mixture-of-Gaussians distribution with 
either two or three Gaussians (fig. 2). A set of binary or ternary state variables Si 

then determine which Gaussian is used to describe the coefficients. 

The total prior over both sets of variables, a and s, is of the form 

(2) 



Learning Sparse Codes with a Mixture-of-Gaussians Prior 

Two Gaussians 
(binary state variables) 

P(lIj) 

ai 

Three Gaussians 
(ternary state variables) 

P(lIj) 

_,;=-1 .<;=1 

Figure 2: Mixture-of-Gaussians prior. 
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ai 

where P(Si) determines the probability of being in the active or inactive states, and 
P(ailsi) is a Gaussian distribution whose mean and variance is determined by the 
current state Si. 

The total image probability is then given by 

where 

P(IIO) = L P(s/O) J P(I/a, O)P(als, O)da 
s 

P(Ila, 0) 

P(als,O) 

P(sIO) 

1 -~II-4>aI2 --e 2 

ZAN 

_l_e-t(a-Il(s))t Aa(s) (a-Il(s)) 

ZAa(s) 

1 _1s t A s --e 2 • 

ZA. 

(3) 

(4) 

(5) 

(6) 

and the parameters 0 include AN, 4), Aa(s), f.L(s), and As . Aa(s) is a diagonal in­
verse covariance matrix with elements Aa(S)ii = Aa; (Si). (The notations Aa(s) and 
f.L(s) are used here to explicitly reflect the dependence of the means and variances 
of the ai on sd As is also diagonal (for now) with elements ASii = As;. The model 
is illustrated graphically in figure 3. 

Si 
(binary or 
ternary) 

Figure 3: Image model. 
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3 Learning 

The objective function for learning the parameters of the model is the average 
log-likelihood: 

£ = (log P(IIO)) (7) 

Maximizing this objective will minimize the lower bound on coding length. 

Learning is accomplished via gradient ascent on the objective, £. The learning rules 
for the parameters As, Aa (s), J-t( s) and ~ are given by: 

ex 

= 

{)£ 

{)>"Si 

1 
2 [(Si)P(SiI 9) - (si)P(sII,9)] 

{)£ 

{)>"ai (u) 

! [(8(Si - u))P(sII,9)_ 
2 >"ai (u) 

(8(Si - u) (Kii(U) - 2ai(U)J-ti(U) + J-t~(u)))P(sII,9)] 
{)£ 

{)J-ti( u) 
>"ai (u) (8(Si - u) (ai(u) - J-ti(U))) 
{)£ 

{)~ 

>"N [I (a(s)) P(sII,9) - ~ (K(s)) P(SII,9)] 

(8) 

(9) 

(10) 

(11) 

where u takes on values 0,1 (binary) or -1,0,1 (ternary) and K(s) H-1 (s) + 
a(s) a(s)T. (a and H are defined in eqs. 15 and 16 in the next section.) Note 
that in these expressions we have dropped the outer brackets averaging over images 
simply to reduce clutter. 

Thus, for each image we must sample from the posterior P(sll, 0) in order to collect 
the appropriate statistics needed for learning. These statistics must be accumulated 
over many different images, and then the parameters are updated according to the 
rules above. Note that this approach differs from that of Attias [6] in that we do 
not attempt to sum over all states, s, or to use the variational approximation to 
approximate the posterior. Instead, we are effectively summing only over those 
states that are most probable according to the posterior. We conjecture that this 
scheme will work in practice because the posterior has significant probability only 
for a small fraction of states s, and so it can be well-characterized by a relatively 
small number of samples. Next we present an efficient method for Gibbs sampling 
from the posterior. 

4 Sampling and inference 

In order to sample from the posterior P(sll,O), we first cast it in Boltzmann form: 

P(sll,O) ex e-E(s) (12) 

where 

E(s) = -logP(s,IIO) = -logP(sIO) J P(lla,O)P(als,O)da 
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~ST Ass + 10gZAa(S) + Eals(a,s) + ~IOgdetH(s) + const. (13) 

and 

a = argminEals(a,s) 
a 

H(s) = \7\7 aEals(a, s) = )\Nif!T if! + Aa(s) 

(14) 

(15) 

(16) 

Gibbs-sampling on P(sII, (}) can be performed by flipping state variables Si accord­
ing to 

P(Si t- sa) = 

P(Si t- sa) = 

l+e~E(·i~·a) 

1 

(binary) 

(ternary) 

(17) 

(18) 

Where sa = Si in the binary case, and sa and sf3 are the two alternative states in 
the ternary case. AE(Si t- sa) denotes the change in E(s) due to changing Si to 
sa and is given by: 

(19) 

where ASi = sa - Si, AAai = Aai (sa) - Aai (Si), J = H- 1 , and Vi = Aai (Si) J.Li(Si). 
Note that all computations for considering a change of state are local and involve 
only terms with index i. Thus, deciding whether or not to change state can be 
computed quickly. However, if a change of state is accepted, then we must update 
J. Using the Sherman-Morrison formula, this can be kept to an O(N2) computation: 

J t- J - [ AAak ] J k Jk 
1 + AAak Jkk 

(20) 

As long as accepted state changes are rare (which we have found to be the case for 
sparse distributions), then Gibbs sampling may be performed quickly and efficiently. 
In addition, Hand J are generally very sparse matrices, so as the system is scaled 
up the number of elements of a that are affected by a flip of Si will be relatively 
few. 

In order to code images under this model, a single state of the coefficients must be 
chosen for a given image. We use for this purpose the MAP estimator: 

argmaxP(aII,s, (}) 
a 

arg max P(sII, (}) 
s 

(21) 

(22) 

Maximizing the posterior distribution over s is accomplished by assigning a tem­
perature, 

P(sII, (}) ex e-E(s)/T (23) 

and gradually lowering it until there are no more state changes. 
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5 Results 

5.1 Test cases 

We first trained the algorithm on a number of test cases containing known forms 
of both sparse and non-sparse (bi-modal) structure, using both critically sampled 
(complete) and 2x's overcomplete basis sets. The training sets consisted of 6x6 
pixel image patches that were created by a sparse superposition of basis functions 
(36 or 72) with P(ISil = 1) = 0.2, Aa; (0) = 1000, and Aa; (1) = 10. The results of 
these test cases confirm that the algorithm is capable of correctly extracting both 
sparse and non-sparse structure from data, and they are not shown here for lack of 
space. 

5.2 Natural images 

We trained the algorithm on 8x8 image patches extracted from pre-whitened natural 
images. In all cases, the basis functions were initialized to random functions (white 
noise) and the prior was initialized to be Gaussian (both Gaussians of roughly equal 
variance). Shown in figure 4a, b are the results for a set of 128 basis functions (2 x 's 
overcomplete) in the two-Gausian case. In the three-Gaussian case, the prior was 
initialized to be platykurtic (all three Gaussians of equal variance but offset at 
three different positions). Thus, in this case the sparse form of the prior emerged 
completely from the data. The resulting priors for two of the coefficients are shown 
in figure 4c, with the posterior distribution averaged over many images overlaid. For 
some of the coefficients the posterior distribution matches the mixture-of-Gaussians 
prior well, but for others the tails appear more Laplacian in form. Also, it appears 
that the extra complexity offered by having three Gaussians is not utilized: Both 
Gaussians move to the center position and have about the same mean. When a 
non-sparse, bimodal prior is imposed, the basis function solution does not become 
localized, oriented, and bandpass as it does with sparse priors. 

5.3 Coding efficiency 

We evaluated the coding efficiency by quantizing the coefficients to different levels 
and calculating the total coefficient entropy as a function of the distortion intro­
duced by quantization. This was done for basis sets containing 48, 64, 96, and 
128 basis functions. At high SNR's the overcomplete basis sets yield better coding 
efficiency, despite the fact that there are more coefficients to code. However, the 
point at which this occurs appears to be well beyond the point where errors are no 
longer perceptually noticeable (around 14 dB). 

6 Conclusions 

We have shown here that both the prior and basis functions of our image model 
can be adapted to natural images. Without sparseness being imposed, the model 
both seeks distributions that are sparse and learns the appropriate basis functions 
for this distribution. Our conjecture that a small number of samples allows the 
posterior to be sufficiently characterized appears to hold. In all cases here, aver­
ages were collected over 40 Gibbs sweeps, with 10 sweeps for initialization. The 
algorithm proved capable of extracting the structure in challenging datasets in high 
dimensional spaces. 

The overcomplete image codes have the lowest coding cost at high SNR levels, but 
at levels that appear higher than is practically useful. On the other hand, the 




