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A fundamental problem with the modeling of chaotic time series data is that 
minimizing short-term prediction errors does not guarantee a match 
between the reconstructed attractors of model and experiments. We 
introduce a modeling paradigm that simultaneously learns to short-tenn 
predict and to locate the outlines of the attractor by a new way of nonlinear 
principal component analysis. Closed-loop predictions are constrained to 
stay within these outlines, to prevent divergence from the attractor. Learning 
is exceptionally fast: parameter estimation for the 1000 sample laser data 
from the 1991 Santa Fe time series competition took less than a minute on 
a 166 MHz Pentium PC. 

1 Introduction 

We focus on the following objective: given a set of experimental data and the assumption that 
it was produced by a deterministic chaotic system, find a set of model equations that will 
produce a time-series with identical chaotic characteristics, having the same chaotic attractor. 
The common approach consists oftwo steps: (1) identify a model that makes accurate short­
tenn predictions; and (2) generate a long time-series with the model and compare the 
nonlinear-dynamic characteristics of this time-series with the original, measured time-series. 

Principe et al. [1] found that in many cases the model can make good short-tenn predictions 
but does not learn the chaotic attractor. The method would be greatly improved if we could 
minimize directly the difference between the reconstructed attractors of the model-generated 
and measured data, instead of minimizing prediction errors. However, we cannot reconstruct 
the attractor without first having a prediction model. Until now research has focused on how 
to optimize both step 1 and step 2. For example, it is important to optimize the prediction 
horizon of the model [2] and to reduce complexity as much as possible. This way it was 
possible to learn the attractor of the benchmark laser time series data from the 1991 Santa Fe 
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time series competition. While training a neural network for this problem, we noticed [3] that 
the attractor of the model fluctuated from a good match to a complete mismatch from one 
iteration to another. We were able to circumvent this problem by selecting exactly that model 
that matches the attractor. However, after carrying out more simulations we found that what 
we neglected as an unfortunate phenomenon [3] is really a fundamental limitation of current 
approaches. 

An important development is the work of Principe et al. [4] who use Kohonen Self Organizing 
Maps (SOMs) to create a discrete representation of the state space of the system. This creates 
a partitioning of the input space that becomes an infrastructure for local (linear) model 
construction. This partitioning enables to verify if the model input is near the original data (i. e. , 
detect if the model is not extrapolating) without keeping the training data set with the model. 
We propose a different partitioning of the input space that can be used to (i) learn the outlines 
of the chaotic attractor by means of a new way of nonlinear Principal Component Analysis 
(PCA), and (ii) enforce the model never to predict outside these outlines. The nonlinear PCA 
algorithm is inspired by the work of Kambhatla and Leen [5] on local PCA: they partition the 
input space and perform local PCA in each region. Unfortunately, this introduces 
discontinuities between neighboring regions. We resolve them by introducing a hierarchical 
partitioning algorithm that uses fuzzy boundaries between the regions . This partitioning closely 
resembles the hierarchical mixtures of experts of Jordan and Jacobs [6]. 

In Sec. 2 we put forward the fundamental problem that arises when trying to learn a chaotic 
attractor by creating a short-term prediction model. In Sec. 3 we describe the proposed 
partitioning algorithm. In Sec. 4 it is outlined how this partitioning can be used to learn the 
outline of the attractor by defining a potential that measures the distance to the attractor. In Sec. 
5 we show modeling results on a toy example, the logistic map, and on a more serious 
problem, the laser data from the 1991 Santa Fe time series competition. Section 6 concludes. 

2 The attractor learning dilemma 

Imagine an experimental system with a chaotic attractor, and a time-series of noise-free 
measurements taken from this system. The data is used to fit the parameters of the model 
;.1 =FwC; ' ;_I"" ,Zt-m) whereF is a nonlinear function, w contains its adjustable parameters 
and m is a positive constant. What happens if we fit the parameters w by nonlinear least 
squares regression? Will the model be stable, i.e. , will the closed-loop long term prediction 
converge to the same attractor as the one represented by the measurements? 

Figure 1 shows the result of a test by Diks et al. [7] that compares the difference between the 
model and measured attractor. The figure shows that while the neural network is trained to 
predict chaotic data, the model quickly 
converges to the measured attractor 20 t-----;r-----r-.....,.1t_:_----.----.-----i-,----i-,----, 

(S=O), but once in a while, from one 
iteration to another, the match between 
the attractors is lost. 

To understand what causes this 
instability, imagine that we try to fit the 
parameters of a model ;.1 = ii + B Zt 
while the real system has a point 
attractor, Z = a, where Z is the state of 
the system and a its attracting value. 
Clearly, measurements taken from this 
system contain no information to 
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Figure 1: Diks test monitoring curve for a neural 
network model trained on data from an 
experimental chaotic pendulum [3]. 
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estimate both ii and B. If we fit the model parameters with non-robust linear least squares, B 
may be assigned any value and if its largest eigenvalue happens to be greater than zero, the 
model will be unstable! 

For the linear model this problem has been solved a long time ago with the introduction of 
singular value decomposition. There still is a need for a nonlinear counterpart of this technique, 
in particular since we have to work with very flexible models that are designed to fit a wide 
variety of nonlinear shapes, see for example the early work of Lapedes and Farber [8]. It is 
already common practice to control the complexity of nonlinear models by pruning or 
regularization. Unfortunately, these methods do not always solve the attractor learning 
problem, since there is a good chance that a nonlinear term explains a lot of variance in one 
part of the state space, while it causes instability of the attractor (without affecting the one-step­
ahead prediction accuracy) elsewhere. In Secs. 3 and 4 we will introduce a new method for 
nonlinear principal component analysis that will detect and prevent unstable behavior. 

3. The split and fit algorithm 

The nonlinear regression procedure of this section will form the basis of the nonlinear principal 
component algorithm in Sec. 4. It consists of (i) a partitioning of the input space, (ii) a local 
linear model for each region, and (iii) fuzzy boundaries between regions to ensure global 
smoothness. The partitioning scheme is outlined in Procedure 1: 

Procedure 1: Partitioning the input space 

1) Start with the entire set Z of input data 

2) Determine the direction of largest variance of Z: perform a singular value 
decomposition of Z into the product ULVT and take the eigenvector (column 
of V) with the largest singular value (on the diagonal of EJ. 
3) Split the data in two subsets (to be called: clusters) by creating a plane 
perpendicular to the direction of largest variance, through the center of 
gravity of Z. 

4) Next, select the cluster with the largest sum squared error to be split next, 
and recursively apply 2-4 until a stopping criteria is met. 

Figures 2 and 3 show examples of the partitioning. The disadvantage of dividing regression 
problems into localized subproblems was pointed out by Jordan and Jacobs [6]: the spread of 
the data in each region will be much smaller than the spread of the data as a whole, and this 
will increase the variance of the model parameters. Since we always split perpendicular to the 
direction of maximum variance, this problem is minimized. 

The partitioning can be written as a binary tree, with each non-terminal node being a split and 
each terminal node a cluster. Procedure 2 creates fuzzy boundaries between the clusters. 

Procedure 2. Creating fuzzy boundaries 

1) An input i enters the tree at the top of the partitioning tree. 

2) The Euclidean distance to the splitting hyperplane is divided by the 
bandwidth f3 of the split, and passed through a sigmoidal function with range 
[0,1]. This results in i's share 0 in the subset on z's side of the splitting 
plane. The share in the other subset is I-a. 

3) The previous step is carried out for all non-terminal nodes of the tree. 
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4) The membership Pc of z to subset (terminal node) c is computed by 
taking the product of all previously computed shares 0 along the path from 
the terminal node to the top of the tree. 

If we would make all parameters adjustable, that is (i) the orientation of the splitting 
hyperplanes, (ii) the bandwidths f3, and (iii) the local linear model parameters, the above model 
structure would be identical to the hierarchical mixtures of experts of Jordan and Jacobs [6]. 
However, we already fixed the hyperplanes and use Procedure 3 to compute the bandwidths: 

Procedure 3. Computing the Bandwidths 

1) The bandwidths of the terminal nodes are taken to be a constant (we use 1.65, 
the 90% confidence limit of a normal distribution) times the variance of the 
subset before it was last split, in the direction of the eigenvector of that last split. 

2) The other bandwidths do depend on the input z. They are computed by 
climbing upward in the tree. The bandwidth of node n is computed as a 
weighted sum between the fJs of its right and left child, by the implicit formula 
Pn=OL PL uR PR' in which uL and OR depend on Pn· Starting from initial guess 
Pn=PL if oL>O·5, or else Pn=PR' the formula is solved in a few iterations . 

This procedure is designed to create large overlap between neighboring regions and almost no 
overlap between non-neighboring regions. What remains to be fitted is the set of the local 
linear models. The j-th output of the split&fit model for a given input zp is computed: 

c 
Yj,p = L fl; {ii;zp +b/}. where iicand bC contain the linear model parameters of subset c, 

c=J 

and C is the number of clusters. We can determine the parameters of all local linear models in 
one global fit that is linear in the parameters. However, we prefer to locally optimize the 
parameters for two reasons: (i) it makes it possible to locally control the stability of the 
attractor and do the principal component analysis of Sec. 4; and (ii) the computing time for a 
linear regression problem with r regressors scales -O(~). If we would adopt global fitting, r 
would scale linearly with C and, while growing the model, the regression problem would 
quickly become intractable. We use the following iterative local fitting procedure instead. 

Procedure 4. Iterative Local Fitting 

1) Initialize a J by N matrix of residuals R to zero, J being the number of 
outputs and N the number of data. 

2) For cluster c, if an estimate for its linear model parameters already exists, 
for each input vector z add flcv. to the matrix of residuals, otherwise add 

c p JY l,p . 
flpYj,p to R, Yj.P being the j-th element of the deSIred output vector for sample 
p. 
3) Least squares fit the linear model parameters of cluster c to predict the 
current residuals R, and subtract the (new) estimate, fl;Y;,p' from R. 

4) Do 2-4 for each cluster and repeat the fitting several times (default: 3). 

From simulations we found that the above fast optimization method converges to the global 
minimum if it is repeated many times. Just as with neural network training, it is often better to 
use early stopping when the prediction error on an independent test set starts to increase. 
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4. Nonlinear Principal Component Analysis 

To learn a chaotic attractor from a single experimental time-series we use the method of delays: 
the state l consists of m delays taken from the time series. The embedding dimension m must 
be chosen large enough to ensure that it contains sufficient infonnation for faithful 
reconstruction of the chaotic attractor, see Takens [9]. Typically, this results in an m­
dimensional state space with all the measurents covering only a much lower dimensional, but 
non-linearly shaped, subspace. This creates the danger pointed out in Sec. 2: the stability of the 
model in directions perpendicular to this low dimensional subspace cannot be guaranteed. 

With the split & fit algorithm from Sec. 3 we can learn the non-linear shape of the low 
dimensional subspace, and, if the state of the system escapes from this subspace, we use the 
algorithm to redirect the state to the nearest point on the subspace. See Malthouse [10] for 
limitations of existing nonlinear peA approaches. To obtain the low dimensional subspace, we 
proceed according to Procedure 5. 

Procedure 5. Learning the Low-dimensional Subspace 
1) Augment the output of the model with the m-dimensional statel: the 
model will learn to predict its own input. 
2) In each cluster c, perfonn a singular value decomposition to create a set of 
m principal directions, sorted in order of decreasing explained variance. The 
result of this decomposition is also used in step 3 of Procedure 4. 
3) Allow the local linear model of each cluster to use no more than mred of 
these principal directions. 
4) Define a potential P to be the squared Euclidian distance between the 
state l and its prediction by the model. 

-2 -1 2 

The potential P implicitly defines the 
lower dimensional subspace: if a state 
l is on the subspace, P will be zero. 
P will increase with the distance of l 
from the subspace. The model has 
learned to predict its own input with 
small error, meaning that it has tried 
to reduce P as much as possible at 
exactly those points in state space 
where the training data was sampled. 
In other words, P will be low if the 
input l is close to one of the original 
points in the training data set. From 
the split&fit algorithm we can 
analytically compute the gradient 
dPldl. Since the evaluation of the 
split&fit model involves a backward 
(computing the bandwidths) and 
forward pass (computing 
memberships), the gradient algorithm 
involves a forward and backward 
pass through the tree. The gradient is 
used to project states that are off the 
nonlinear subspace onto the subspace 

Figure 2. Projecting two-dimensional data on a one­
dimensional self-intersecting subspace. The 
colorscale represents the potential P, white indicates 
P>0.04 .. 
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-1 o X 
1 

in one or a few Newton-Rhapson iterations. 
Figure 2 illustrates the algorithm for the 
problem of creating a one-dimensional 
representation of the number '8'. The 
training set consists of 136 clean samples, Xl 

and Fig. 2 shows how a set of 272 noisy 
inputs is projected by a 48 subset split&fit 
model onto the one-dimensional subspace. 
Note that the center of the '8' cannot be well 
represented by a one-dimensional space. We 
leave development of an algorithm that 
automatically detects the optimum local 
subspace dimension for future research. Figure 3. Learning the attractor of the two­

input logistic map. The order of creation of the 
splits is indicated. The colorscale represents the 
potential P, white indicates P>O.05. 

5. Application Examples 

First we show the nonlinear principal 
component analysis result for a toy 
example, the logistic map Zt+l =4zt(1-Zt). If we use a model Zt+l = Fw(zt) , where the 
prediction only depends on one previous output, there is no lower dimensional space to which 
the attractor is confined. However, if we allow the output to depend on more than a single 
delay, we create a possibility for unstable behavior. Figure 3 shows how well the split&fit 
algorithm learns the one-dimensional shape of the attractor after creating only five regions. The 
parabola is slightly deformed (seen from the white lines perpendicular to the attractor), but this 
may be solved by increasing the number of splits. 

Next we look at the laser data. The complex behavior of chaotic systems is caused by an 
interplay of destabilizing and stabilizing forces: the destabilizing forces make nearby points in 
state space diverge, while the stabilizing forces keep the state of the system bounded. This 
process, known as 'stretching and folding', results in the attractor of the system: the set of 
points that the state of the system will visit after all transients have died out. In the case of the 
laser data this behavior is clear cut: destabilizing forces make the signal grow exponentially 
until the increasing amplitude triggers a collapse that reinitiates the sequence. We have seen 
in neural network based models [3] and in this study that it is very hard for the models to cope 
with the sudden collapses. Without the nonlinear subspace correction of Sec. 4, most of the 

train data (a) 

0.4 ,---------+--------------------, (b) 

1000 
time 

Figure 4. Laser data from the Santa Fe time series competition. The 1000 sample train 
data set is followed by iterated prediction of the model (a). After every prediction a 
correction is made to keep P (see Sec. 4) small. Plot (b) shows P before this correction. 
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models we tested grow without bounds after one or more rise and collapse sequences. That is 
not very surprising - the training data set contains only three examples of a collapse. Figure 4 
shows how this is solved with the subspace correction: every time the model is about to grow 
to infinity, a high potential P is detected (depicted in Fig. 3b) and the state of the system is 
directed to the nearest point on the subspace as learned from the nonlinear principal component 
analysis. After some trial and error, we selected an embedding dimension m of 12 and a 
reduced dimension mred of 4. The split&fit model starts with a single dataset, and was grown 
until 48 subsets. At that point, the error on the 1000 sample train set was still decreasing 
rapidly but the error on an independent 1000 sample test set increased. We compared the 
reconstructed attractors of the model and measurements, using 9000 samples of closed-loop 
generated and 9000 samples of measured data. No significant difference between the two 
could be detected by the Diles test [7]. 

6. Conclusions 

We present an algorithm that robustly models chaotic attractors. It simultaneously learns (1) 
to make accurate short term predictions; and (2) the outlines of the attractor. In closed-loop 
prediction mode, the state of the system is corrected after every prediction, to stay within these 
outlines. The algorithm is very fast, since the main computation is to least squares fit a set of 
local linear models. In our implementation the largest matrix to be stored is N by C, N being 
the number of data and C the number of clusters. We see many applications other than attractor 
learning: the split&fit algorithm can be used as a fast learning alternative to neural networks 
and the new form of nonlinear peA will be useful for data reduction and object recognition. 
We envisage to apply the technique to a wide range of applications, from the control and 
modeling of chaos in fluid dynamics to problems in finance and biology to fluid dynamics. 
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