
Robust Learning of Chaotic Attractors

Rembrandt Bakker*
Chemical Reactor Engineering

Delft Univ. of Technology

r.bakker@stm.tudelft·nl

Floris Takens
Dept. Mathematics

University of Groningen

F. Takens@math.rug.nl

Jaap C. Schouten
Chemical Reactor Engineering

Eindhoven Univ. of Technology

J.C.Schouten@tue.nl

C. Lee Giles
NEC Research Institute

Princeton Nl

giles@research.nj.nec.com

Abstract

Marc-Olivier Coppens
Chemical Reactor Engineering

Delft Univ. of Technology

coppens@stm.tudelft·nl

Cor M. van den Bleek
Chemical Reactor Engineering

Delft Univ. of Technology

vdbleek@stm.tudelft·nl

A fundamental problem with the modeling of chaotic time series data is that
minimizing short-term prediction errors does not guarantee a match
between the reconstructed attractors of model and experiments. We
introduce a modeling paradigm that simultaneously learns to short-tenn
predict and to locate the outlines of the attractor by a new way of nonlinear
principal component analysis. Closed-loop predictions are constrained to
stay within these outlines, to prevent divergence from the attractor. Learning
is exceptionally fast: parameter estimation for the 1000 sample laser data
from the 1991 Santa Fe time series competition took less than a minute on
a 166 MHz Pentium PC.

1 Introduction

We focus on the following objective: given a set of experimental data and the assumption that
it was produced by a deterministic chaotic system, find a set of model equations that will
produce a time-series with identical chaotic characteristics, having the same chaotic attractor.
The common approach consists oftwo steps: (1) identify a model that makes accurate short­
tenn predictions; and (2) generate a long time-series with the model and compare the
nonlinear-dynamic characteristics of this time-series with the original, measured time-series.

Principe et al. [1] found that in many cases the model can make good short-tenn predictions
but does not learn the chaotic attractor. The method would be greatly improved if we could
minimize directly the difference between the reconstructed attractors of the model-generated
and measured data, instead of minimizing prediction errors. However, we cannot reconstruct
the attractor without first having a prediction model. Until now research has focused on how
to optimize both step 1 and step 2. For example, it is important to optimize the prediction
horizon of the model [2] and to reduce complexity as much as possible. This way it was
possible to learn the attractor of the benchmark laser time series data from the 1991 Santa Fe

*DelftChemTech, Chemical Reactor Engineering Lab, lulianalaan 136, 2628 BL, Delft, The
Netherlands; http://www.cpt.stm.tudelft.nllcptlcre!researchlbakker/.

880 R. Bakker. J. C. Schouten. M.-Q. Coppens. F. Takens. C. L. Giles and C. M. v. d. Bleek

time series competition. While training a neural network for this problem, we noticed [3] that
the attractor of the model fluctuated from a good match to a complete mismatch from one
iteration to another. We were able to circumvent this problem by selecting exactly that model
that matches the attractor. However, after carrying out more simulations we found that what
we neglected as an unfortunate phenomenon [3] is really a fundamental limitation of current
approaches.

An important development is the work of Principe et al. [4] who use Kohonen Self Organizing
Maps (SOMs) to create a discrete representation of the state space of the system. This creates
a partitioning of the input space that becomes an infrastructure for local (linear) model
construction. This partitioning enables to verify if the model input is near the original data (i. e. ,
detect if the model is not extrapolating) without keeping the training data set with the model.
We propose a different partitioning of the input space that can be used to (i) learn the outlines
of the chaotic attractor by means of a new way of nonlinear Principal Component Analysis
(PCA), and (ii) enforce the model never to predict outside these outlines. The nonlinear PCA
algorithm is inspired by the work of Kambhatla and Leen [5] on local PCA: they partition the
input space and perform local PCA in each region. Unfortunately, this introduces
discontinuities between neighboring regions. We resolve them by introducing a hierarchical
partitioning algorithm that uses fuzzy boundaries between the regions . This partitioning closely
resembles the hierarchical mixtures of experts of Jordan and Jacobs [6].

In Sec. 2 we put forward the fundamental problem that arises when trying to learn a chaotic
attractor by creating a short-term prediction model. In Sec. 3 we describe the proposed
partitioning algorithm. In Sec. 4 it is outlined how this partitioning can be used to learn the
outline of the attractor by defining a potential that measures the distance to the attractor. In Sec.
5 we show modeling results on a toy example, the logistic map, and on a more serious
problem, the laser data from the 1991 Santa Fe time series competition. Section 6 concludes.

2 The attractor learning dilemma

Imagine an experimental system with a chaotic attractor, and a time-series of noise-free
measurements taken from this system. The data is used to fit the parameters of the model
;.1 =FwC; ' ;_I"" ,Zt-m) whereF is a nonlinear function, w contains its adjustable parameters
and m is a positive constant. What happens if we fit the parameters w by nonlinear least
squares regression? Will the model be stable, i.e. , will the closed-loop long term prediction
converge to the same attractor as the one represented by the measurements?

Figure 1 shows the result of a test by Diks et al. [7] that compares the difference between the
model and measured attractor. The figure shows that while the neural network is trained to
predict chaotic data, the model quickly
converges to the measured attractor 20 t-----;r-----r-.....,.1t_:_----.----.-----i-,----i-,----,

(S=O), but once in a while, from one
iteration to another, the match between
the attractors is lost.

To understand what causes this
instability, imagine that we try to fit the
parameters of a model ;.1 = ii + B Zt
while the real system has a point
attractor, Z = a, where Z is the state of
the system and a its attracting value.
Clearly, measurements taken from this
system contain no information to

.. . -~ ----. -. ---' ... -.. - - -, ,
, ,

15 ~
, ,
, ,
, ,
, ,

.... '
I : ;;;'10 ~ • • _ _ L __ • • • _ •• • • • __ -' _____ • • •• • •• •

, , · , · , · , · . 5 _ .. ---- -.-- ---: -_. - .-

~.L »......... ~I
0'-· ·· .. · '.

.- -_ .. _-- -..... _-· . , ,
, ,

Lo.. :

o 8000
training progress leg iterations]

Figure 1: Diks test monitoring curve for a neural
network model trained on data from an
experimental chaotic pendulum [3].

Robust Learning of Chaotic Attractors 881

estimate both ii and B. If we fit the model parameters with non-robust linear least squares, B
may be assigned any value and if its largest eigenvalue happens to be greater than zero, the
model will be unstable!

For the linear model this problem has been solved a long time ago with the introduction of
singular value decomposition. There still is a need for a nonlinear counterpart of this technique,
in particular since we have to work with very flexible models that are designed to fit a wide
variety of nonlinear shapes, see for example the early work of Lapedes and Farber [8]. It is
already common practice to control the complexity of nonlinear models by pruning or
regularization. Unfortunately, these methods do not always solve the attractor learning
problem, since there is a good chance that a nonlinear term explains a lot of variance in one
part of the state space, while it causes instability of the attractor (without affecting the one-step­
ahead prediction accuracy) elsewhere. In Secs. 3 and 4 we will introduce a new method for
nonlinear principal component analysis that will detect and prevent unstable behavior.

3. The split and fit algorithm

The nonlinear regression procedure of this section will form the basis of the nonlinear principal
component algorithm in Sec. 4. It consists of (i) a partitioning of the input space, (ii) a local
linear model for each region, and (iii) fuzzy boundaries between regions to ensure global
smoothness. The partitioning scheme is outlined in Procedure 1:

Procedure 1: Partitioning the input space

1) Start with the entire set Z of input data

2) Determine the direction of largest variance of Z: perform a singular value
decomposition of Z into the product ULVT and take the eigenvector (column
of V) with the largest singular value (on the diagonal of EJ.
3) Split the data in two subsets (to be called: clusters) by creating a plane
perpendicular to the direction of largest variance, through the center of
gravity of Z.

4) Next, select the cluster with the largest sum squared error to be split next,
and recursively apply 2-4 until a stopping criteria is met.

Figures 2 and 3 show examples of the partitioning. The disadvantage of dividing regression
problems into localized subproblems was pointed out by Jordan and Jacobs [6]: the spread of
the data in each region will be much smaller than the spread of the data as a whole, and this
will increase the variance of the model parameters. Since we always split perpendicular to the
direction of maximum variance, this problem is minimized.

The partitioning can be written as a binary tree, with each non-terminal node being a split and
each terminal node a cluster. Procedure 2 creates fuzzy boundaries between the clusters.

Procedure 2. Creating fuzzy boundaries

1) An input i enters the tree at the top of the partitioning tree.

2) The Euclidean distance to the splitting hyperplane is divided by the
bandwidth f3 of the split, and passed through a sigmoidal function with range
[0,1]. This results in i's share 0 in the subset on z's side of the splitting
plane. The share in the other subset is I-a.

3) The previous step is carried out for all non-terminal nodes of the tree.

882 R. Bakker. J. C. Schouten, M.-Q. Coppens, F. Takens, C. L. Giles and C. M. v. d. Bleek

4) The membership Pc of z to subset (terminal node) c is computed by
taking the product of all previously computed shares 0 along the path from
the terminal node to the top of the tree.

If we would make all parameters adjustable, that is (i) the orientation of the splitting
hyperplanes, (ii) the bandwidths f3, and (iii) the local linear model parameters, the above model
structure would be identical to the hierarchical mixtures of experts of Jordan and Jacobs [6].
However, we already fixed the hyperplanes and use Procedure 3 to compute the bandwidths:

Procedure 3. Computing the Bandwidths

1) The bandwidths of the terminal nodes are taken to be a constant (we use 1.65,
the 90% confidence limit of a normal distribution) times the variance of the
subset before it was last split, in the direction of the eigenvector of that last split.

2) The other bandwidths do depend on the input z. They are computed by
climbing upward in the tree. The bandwidth of node n is computed as a
weighted sum between the fJs of its right and left child, by the implicit formula
Pn=OL PL uR PR' in which uL and OR depend on Pn· Starting from initial guess
Pn=PL if oL>O·5, or else Pn=PR' the formula is solved in a few iterations .

This procedure is designed to create large overlap between neighboring regions and almost no
overlap between non-neighboring regions. What remains to be fitted is the set of the local
linear models. The j-th output of the split&fit model for a given input zp is computed:

c
Yj,p = L fl; {ii;zp +b/}. where iicand bC contain the linear model parameters of subset c,

c=J

and C is the number of clusters. We can determine the parameters of all local linear models in
one global fit that is linear in the parameters. However, we prefer to locally optimize the
parameters for two reasons: (i) it makes it possible to locally control the stability of the
attractor and do the principal component analysis of Sec. 4; and (ii) the computing time for a
linear regression problem with r regressors scales -O(~). If we would adopt global fitting, r
would scale linearly with C and, while growing the model, the regression problem would
quickly become intractable. We use the following iterative local fitting procedure instead.

Procedure 4. Iterative Local Fitting

1) Initialize a J by N matrix of residuals R to zero, J being the number of
outputs and N the number of data.

2) For cluster c, if an estimate for its linear model parameters already exists,
for each input vector z add flcv. to the matrix of residuals, otherwise add

c p JY l,p .
flpYj,p to R, Yj.P being the j-th element of the deSIred output vector for sample
p.
3) Least squares fit the linear model parameters of cluster c to predict the
current residuals R, and subtract the (new) estimate, fl;Y;,p' from R.

4) Do 2-4 for each cluster and repeat the fitting several times (default: 3).

From simulations we found that the above fast optimization method converges to the global
minimum if it is repeated many times. Just as with neural network training, it is often better to
use early stopping when the prediction error on an independent test set starts to increase.

Robust Learning o/Chaotic Attractors 883

4. Nonlinear Principal Component Analysis

To learn a chaotic attractor from a single experimental time-series we use the method of delays:
the state l consists of m delays taken from the time series. The embedding dimension m must
be chosen large enough to ensure that it contains sufficient infonnation for faithful
reconstruction of the chaotic attractor, see Takens [9]. Typically, this results in an m­
dimensional state space with all the measurents covering only a much lower dimensional, but
non-linearly shaped, subspace. This creates the danger pointed out in Sec. 2: the stability of the
model in directions perpendicular to this low dimensional subspace cannot be guaranteed.

With the split & fit algorithm from Sec. 3 we can learn the non-linear shape of the low
dimensional subspace, and, if the state of the system escapes from this subspace, we use the
algorithm to redirect the state to the nearest point on the subspace. See Malthouse [10] for
limitations of existing nonlinear peA approaches. To obtain the low dimensional subspace, we
proceed according to Procedure 5.

Procedure 5. Learning the Low-dimensional Subspace
1) Augment the output of the model with the m-dimensional statel: the
model will learn to predict its own input.
2) In each cluster c, perfonn a singular value decomposition to create a set of
m principal directions, sorted in order of decreasing explained variance. The
result of this decomposition is also used in step 3 of Procedure 4.
3) Allow the local linear model of each cluster to use no more than mred of
these principal directions.
4) Define a potential P to be the squared Euclidian distance between the
state l and its prediction by the model.

-2 -1 2

The potential P implicitly defines the
lower dimensional subspace: if a state
l is on the subspace, P will be zero.
P will increase with the distance of l
from the subspace. The model has
learned to predict its own input with
small error, meaning that it has tried
to reduce P as much as possible at
exactly those points in state space
where the training data was sampled.
In other words, P will be low if the
input l is close to one of the original
points in the training data set. From
the split&fit algorithm we can
analytically compute the gradient
dPldl. Since the evaluation of the
split&fit model involves a backward
(computing the bandwidths) and
forward pass (computing
memberships), the gradient algorithm
involves a forward and backward
pass through the tree. The gradient is
used to project states that are off the
nonlinear subspace onto the subspace

Figure 2. Projecting two-dimensional data on a one­
dimensional self-intersecting subspace. The
colorscale represents the potential P, white indicates
P>0.04 ..

884 R. Bakker, J C. Schouten, M.-O. Coppens, F. Takens, C. L. Giles and C. M. v. d. Bleek

-1 o X
1

in one or a few Newton-Rhapson iterations.
Figure 2 illustrates the algorithm for the
problem of creating a one-dimensional
representation of the number '8'. The
training set consists of 136 clean samples, Xl

and Fig. 2 shows how a set of 272 noisy
inputs is projected by a 48 subset split&fit
model onto the one-dimensional subspace.
Note that the center of the '8' cannot be well
represented by a one-dimensional space. We
leave development of an algorithm that
automatically detects the optimum local
subspace dimension for future research. Figure 3. Learning the attractor of the two­

input logistic map. The order of creation of the
splits is indicated. The colorscale represents the
potential P, white indicates P>O.05.

5. Application Examples

First we show the nonlinear principal
component analysis result for a toy
example, the logistic map Zt+l =4zt(1-Zt). If we use a model Zt+l = Fw(zt) , where the
prediction only depends on one previous output, there is no lower dimensional space to which
the attractor is confined. However, if we allow the output to depend on more than a single
delay, we create a possibility for unstable behavior. Figure 3 shows how well the split&fit
algorithm learns the one-dimensional shape of the attractor after creating only five regions. The
parabola is slightly deformed (seen from the white lines perpendicular to the attractor), but this
may be solved by increasing the number of splits.

Next we look at the laser data. The complex behavior of chaotic systems is caused by an
interplay of destabilizing and stabilizing forces: the destabilizing forces make nearby points in
state space diverge, while the stabilizing forces keep the state of the system bounded. This
process, known as 'stretching and folding', results in the attractor of the system: the set of
points that the state of the system will visit after all transients have died out. In the case of the
laser data this behavior is clear cut: destabilizing forces make the signal grow exponentially
until the increasing amplitude triggers a collapse that reinitiates the sequence. We have seen
in neural network based models [3] and in this study that it is very hard for the models to cope
with the sudden collapses. Without the nonlinear subspace correction of Sec. 4, most of the

train data (a)

0.4 ,---------+--------------------, (b)

1000
time

Figure 4. Laser data from the Santa Fe time series competition. The 1000 sample train
data set is followed by iterated prediction of the model (a). After every prediction a
correction is made to keep P (see Sec. 4) small. Plot (b) shows P before this correction.

Robust Learning of Chaotic Attractors 885

models we tested grow without bounds after one or more rise and collapse sequences. That is
not very surprising - the training data set contains only three examples of a collapse. Figure 4
shows how this is solved with the subspace correction: every time the model is about to grow
to infinity, a high potential P is detected (depicted in Fig. 3b) and the state of the system is
directed to the nearest point on the subspace as learned from the nonlinear principal component
analysis. After some trial and error, we selected an embedding dimension m of 12 and a
reduced dimension mred of 4. The split&fit model starts with a single dataset, and was grown
until 48 subsets. At that point, the error on the 1000 sample train set was still decreasing
rapidly but the error on an independent 1000 sample test set increased. We compared the
reconstructed attractors of the model and measurements, using 9000 samples of closed-loop
generated and 9000 samples of measured data. No significant difference between the two
could be detected by the Diles test [7].

6. Conclusions

We present an algorithm that robustly models chaotic attractors. It simultaneously learns (1)
to make accurate short term predictions; and (2) the outlines of the attractor. In closed-loop
prediction mode, the state of the system is corrected after every prediction, to stay within these
outlines. The algorithm is very fast, since the main computation is to least squares fit a set of
local linear models. In our implementation the largest matrix to be stored is N by C, N being
the number of data and C the number of clusters. We see many applications other than attractor
learning: the split&fit algorithm can be used as a fast learning alternative to neural networks
and the new form of nonlinear peA will be useful for data reduction and object recognition.
We envisage to apply the technique to a wide range of applications, from the control and
modeling of chaos in fluid dynamics to problems in finance and biology to fluid dynamics.

Acknowledgements

This work is supported by the Netherlands Foundation for Chemical Research (SON) with financial
aid from the Netherlands Organization for Scientific Research (NWO).

References

[1] 1.e. Principe, A. Rathie, and 1.M. Kuo. "Prediction of Chaotic Time Series with Neural Networks
and the Issue of Dynamic Modeling". Int. J. Bifurcation and Chaos. 2, 1992. P 989.

[2] 1.M. Kuo. and 1.C. Principe. "Reconstructed Dynamics and Chaotic Signal Modeling". In Proc.
IEEE Int'l Conf. Neural Networks, 5, 1994, p 3l31.

[3] R Bakker, J.C. Schouten, e.L. Giles. F. Takens, e.M. van den Bleek, "Learning Chaotic
Attractors by Neural Networks", submitted.

[4] 1.e. Principe, L. Wang, MA Motter, "Local Dynamic Modeling with Self-Organizing Maps and
Applications to Nonlinear System Identification and Control" .Proc. IEEE. 86(11). 1998.

[5] N. Kambhatla, T.K. Leen. "Dimension Reduction by Local PCA", Neural Computation. 9,1997.
p. 1493

[6] M.I. Jordan, RA. Jacobs. "Hierarchical Mixtures of Experts and the EM Algorithm". Neural
Compution. 6. 1994. p. 181.

[7] e. Diks, W.R. van Zwet. F. Takens. and 1. de Goede, "Detecting differences between delay vector
distributions", PhYSical Review E. 53, 1996. p. 2169.

[8] A. Lapedes. R Farber. "Nonlinear Signal Processing Using Neural Networks: Prediction and
System Modelling". Los Alamos Technical Report LA-UR-87-2662.

[9] F. Takens, "Detecting strange attractors in turbulence", Lecture notes in Mathematics,
898, 1981, p. 365.
[10] E.C. Malthouse. "Limitations of Nonlinear PCA as performed with Generic Neural Networks.
IEEE Trans. Neural Networks. 9(1). 1998. p. 165.

