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Abstract

Long-term potentiation (LTP) has long been held as a biological
substrate for associative learning. Recently, evidence has emerged
that long-term depression (LTD) results when the presynaptic cell
fires after the postsynaptic cell. The computational utility of LTD
is explored here. Synaptic modification kernels for both LTP and
LTD have been proposed by other laboratories based studies of one
postsynaptic unit. Here, the interaction between time-dependent
LTP and LTD is studied in small networks.

1 Introduction

Long term potentiation (LTP) is a neurophysiological phenomenon observed under
laboratory conditions in which two neurons or neural populations are stimulated at a
high frequency with a resulting measurable increase in synaptic efficacy between
them that lasts for several hours or days [1]-[2] LTP thus provides direct evidence
supporting the neurophysiological hypothesis articulated by Hebb [3].

This increase in synaptic strength must be countered by a mechanism for weakening
the synapse [4]. The biological correlate, long-term depression (LTD) has also been
observed in the laboratory; that is, synapses are observed to weaken when low
presynaptic activity coincides with high postsynaptic activity [5]-[6].

Mathematical formulations of Hebbian learning produce weights, wy;, (where i is the
presynaptic unit and j is the postsynaptic unit), that capture the covariance [Eq. 1]
between the instantaneous activities of pairs of units, a; and a; [71.

Wwii (1) = (a; @) —a;)(a j(®)-aj) (1]

This idea has been generalized to capture covariance between activities that are
shifted in time [8]-[9], resulting in a framework that can model systems with
temporal delays and dependencies [Eq. 2].

wij (1) = HK (t"—1)a;(t")a ; @")dt"dt’ 2]



LTD Facilitates Learning in a Noisy Environment 151

As will be shown in the following sections, depending on the choice of the function
K(A4r), this formulation encompasses a broad range of learning rules [10]-[12] and
can support a comparably broad range of biological evidence.
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Figure 1. Synaptic change as a function of the time difference between spikes from
the presynaptic neuron and the postsynaptic neuron. Note that for ,,. < fpos» LTP
results (Aw > 0), and for #,,. > t,,,, the result is LTD.

Recent biological data from [13]-[15], indicates an increase in synaptic strength
(LTP) when presynaptic activity precedes postsynaptic activity, and LTD in the
reverse case (postsynaptic precedes presynaptic). These ideas have started to appear
in some theoretical models of neural computation [10]-[12], [16]-[18]. Thus, Figure
1 shows the form of the dependence of synaptic change, 4w on the difference in
spike arrival times.

2 A General Framework

Given specific assumptions, the integral in Eq. 2 can be separated into two integrals,
one representing LTP and one representing LTD [Eq. 3].

i t
wijt)= ] Kp(t=t)aj(t)a(.)dt’+ ’ | Kp-taita j)dr [3]
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The activities that do not depend on ¢’ can be factored out of the integrals, giving
two Hebb-like products. between the instantaneous activity in one cell and a
weighted time average of the activity in the other [Eq. 4]:

;i (0 = (a;(0) pa; O - g (r)(aj(r)>D

t
where () y =1 | Ky @—1)f("dt’l for X € (P,D)

[ =—co

[4]

The kemel functions Kp and Kp can be chosen to select precise times out of the
convoluted function f{t), or to average across the functions for an arbitrary range. The
alpha function is useful here [Eq. 5]. A high value of « selects an immediate time, while
a small value approximates a longer time-average.

Ky ()= Byre X* for X e {P,D)
with ap >0,0p >0,8p >0,8, <0

[5]
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For high values of o and ap, only pre- and post- synaptic activities that are very close
temporally will interact to modify the synapse. In a simulation with discrete step sizes,
this can be reasonably approximated by only considering just a single time step [Eq. 6].

Aw,J(I):a,(l‘—l)aj(r)—a,(t)al’ (I—]) [6]

Summing Aw,{(f) and Aw;{t+1) gives a net change in the weights A%w;; = wi(t+1)-w(t-1)
over the two time steps:

APw; () =a;0)APa; (1) -a; (AP a, (1) [7]

The first term is predictive in that it has the form of the delta rule where afr+1) acts as a
training signal for g; (1-1), as in a temporal Hopfield network [9].

3 Temporal Contrast Enhancement

The computational role of the LTP term in Eq. 3 is well established, but how does the
second term contribute? A possibility is that the term is analogous to lateral inhibition in
the temporal domain; that is, that by suppressing associations in the “wrong” temporal
direction, the system may be more robust against noise in the input. The resulting system
may be able to detect the onset and offset of a signal more reliably than a system not
using an anti-Hebbian LTD term.

The extent to which the LTD term is able to enhance temporal contrast is likely to depend
idiosyncratically on the statistical qualities of a particular system. If so, the parameters of
the system might only be valid for signals with specific statistical properties, or the
parameters might be adaptive. Either of these possibilities lies beyond the scope of
analysis for this paper.

4 Simulations

Two preliminary simulation studies illustrate the use of the learning rule for predictive
behavior and for temporal contrast enhancement. For every simulation, kernel functions
were specified by the parameters aand £, and the number of time steps, np and np, that
were sampled for the approximation of each integral.

4.1 Task 1. A Sequential Shifter

The first task is a simple shifter over a set of 7 to 20 units. The system is trained on these
stimuli and then tested to see if it can reconstruct the sequence given the initial input.
The task is given with no noise and with temporal noise (see Figure 2). Task 1 is
designed to examine the utility of LTD as an approach to learning a sequence with
temporal noise. The ability of the network to reconstruct the noise-free sequence after
training on the noisy sequence was tested for different LTD kernel functions.

Note that the same patterns are presented (for each time slice, just one of the n units is
active), but the shifts either skip or repeat in fime. Experiments were run with k = 1, 2, or
3 of the units active.

4.2 Task 2. Time series reconstruction.

In this task, a set of units was trained on external sinusoidal signals that varied according
to frequency and phase. The purpose of this task is to examine the role of LTD in
providing temporal context. The network was then tested under a condition in which the



LTD Facilitates Learning in a Noisy Environment 153

external signals were provided to all but one of the units. The activity of the deprived
unit was then compared with its training signal

Sequence Reconstruction
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Figure 2. Reconstruction of clean shifter sequence using as input the noisy stimulus
shifter sequence. For each time slice, just one of the 7 units is active. In the clean
sequence, activity shifts cyclically around the 7 units. The noisy sequence has a random
jitter of +1,

5 ResultsSequential Shifter Results

All networks trained on the clean sequence can learn the task with LTP alone, but
no networks could learn the shifter task based on a noisy training sequence unless
there was also an LTD termm. Without an LTD term, most units would saturate to
maximum values. For a range of LTD parameters, the network would converge
without saturating. Reconstruction performance was found to be sensitive to the
LTD parameters. The parameters « and f shown in Table.1 needed to be chosen
very specifically to get perfect reconstruction (this was done by trial and error). For
a narrow range of parameters near the optimal values, the reconstructed sequence
was close to the noise-free target. However, the parameters « and £ shown in
Table 2 are estimated from the experimental result of Zhang,et al [15].

Table 1. Results of the sequential shifter task.

k nin | op B np | Gp Bo np| Time
1 1 |1 P72 {1]o01 loa 5 | 208
D 1 |1 k72 | 1|01 |04 4 | 40

2 |05 04 | 3]02}01 7 | 192
B 7 1 |05 pa 1 |02 }0.1 6 | 168
110 |1 |1 R72 | 1] 01 o4 8 | 682
p 10 (1 |1 p72 | 101 o4 7 |99
115 |1 |1 p72 ] 1|01 loa 13 | 1136
120 |1 |1 p72|1]o01 to4 18 | 4000

The task was to shift a pattern 1 unit with each time step. A block of k of n units was
active. The parameters of the kernel functions (e and f), the number of values sampled
from the kernel (the number of time slices used to estimate the integral), np and np, and
the number of steps used to begin the reconstruction, 7, (usually n, = 1) are given in the
table. The last column of the table (Time) reports the number of iterations required for
perfect reconstruction.
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Table 2.. Results of the sequential shifter task using as parameters: n, =1; np =1;
ap =0.125; 0p=0.5; Bp=-ap *e*0.35; Bp=0p *e*0.8.

k n np | Time
1 7 6 288

2 7 96

3 7 4 64

For the above results, the k active units were always adjacent with respect to the shifting
direction. For cases with noncontiguous active units, reconstruction was never exact.
Networks trained with LTP alone would saturate, but would converge to a sequence
“close” to the target (Fig. 3) if an LTD term was added.

Sequence Reconstruction
Clean Noisy LTP alone LTP & LTD
GGCGGGGGAG aaqaecaaa G GGGGGGG
12:1141%'6‘7 01234:'6";‘ 01626?640506? 12::-:?.'6"?
OEmOOoOSDom momBoOooo OEooooOm omoooom
T EoEDDOOO moEDDOO EEEEEEN mEEmOBOB
; oEoOEOOO oomEOoOEOO EEEEEEN EEENDOD
oomOomEOB oEOomOBB EEEEEEN DoONMEEEND
m OooomOEDO ooooEON EEEEEENN oooEEE®N
e oooomEGa N oooomEON EEEEEEN EoooEEN
EooooEn EooooED EEEEEEN oEooEEN
OoEOooOm OoEocooomN EEEEEEN mEEOOoON

Figure 3. This base pattern (k=2, n=7) with noncontiguous active units was
presented as a shifted sequence with noise. The target sequence is partially
reconstructed only when LTP and LTD are used together.

5.1 Time Series Reconstruction Results

A network of just four units was trained for hundreds of iterations, the units were each
externally driven by a sinusoidally varying input. Networks trained with LTP alone fail
to reconstruct the time series on units deprived of external input during testing. In these
simulations, there is no noise in the patterns, but LTD is shown to be necessary for
reconstruction of the patterns (Fig. 4).

.

Figure 4. Reconstruction of sinusoids. Target signals. from training (dashed)
plotted with reconstructed signals (solid). Left: The best reconstruction using LTP
alone. Right: A typical result with LTP and LTD together.

For high values of @ and o, the reconstruction of sinusoids is very sensitive to the
values of fpand S Figure 5 shows the results when |8, | and S- values are close. In
the first case (top), when 1B, 1 is slightly smaller than S , the first two neurons
(from left to right) saturate. And, in the contrary case (bottom) the first two neurons









