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Abstract 

This paper presents a novel practical framework for Bayesian model 
averaging and model selection in probabilistic graphical models. 
Our approach approximates full posterior distributions over model 
parameters and structures, as well as latent variables, in an analyt­
ical manner. These posteriors fall out of a free-form optimization 
procedure, which naturally incorporates conjugate priors. Unlike 
in large sample approximations, the posteriors are generally non­
Gaussian and no Hessian needs to be computed. Predictive quanti­
ties are obtained analytically. The resulting algorithm generalizes 
the standard Expectation Maximization algorithm, and its conver­
gence is guaranteed. We demonstrate that this approach can be 
applied to a large class of models in several domains, including 
mixture models and source separation. 

1 Introduction 

A standard method to learn a graphical model 1 from data is maximum likelihood 
(ML). Given a training dataset, ML estimates a single optimal value for the model 
parameters within a fixed graph structure. However, ML is well known for its ten­
dency to overfit the data. Overfitting becomes more severe for complex models 
involving high-dimensional real-world data such as images, speech, and text. An­
other problem is that ML prefers complex models, since they have more parameters 
and fit the data better. Hence, ML cannot optimize model structure. 

The Bayesian framework provides, in principle, a solution to these problems. Rather 
than focusing on a single model, a Bayesian considers a whole (finite or infinite) class 
of models. For each model, its posterior probability given the dataset is computed. 
Predictions for test data are made by averaging the predictions of all the individ­
ual models, weighted by their posteriors. Thus, the Bayesian framework avoids 
overfitting by integrating out the parameters. In addition, complex models are 
automatically penalized by being assigned a lower posterior probability, therefore 
optimal structures can be identified. 

Unfortunately, computations in the Bayesian framework are intractable even for 

lWe use the term 'model' to refer collectively to parameters and structure. 
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very simple cases (e.g. factor analysis; see [2]). Most existing approximation meth­
ods fall into two classes [3]: Markov chain Monte Carlo methods and large sample 
methods (e.g., Laplace approximation). MCMC methods attempt to achieve exact 
results but typically require vast computational resources, and become impractical 
for complex models in high data dimensions. Large sample methods are tractable, 
but typically make a drastic approximation by modeling the 'posteriors over all 
parameters as Normal, even for parameters that are not positive definite (e.g., co­
variance matrices). In addition, they require the computation ofthe Hessian, which 
may become quite intensive. 

In this paper I present Variational Bayes (VB), a practical framework for Bayesian 
computations in graphical models. VB draws together variational ideas from in­
tractable latent variables models [8] and from Bayesian inference [4,5,9], which, in 
turn, draw on the work of [6]. This framework facilitates analytical calculations of 
posterior distributions over the hidden variables, parameters and structures. The 
posteriors fall out of a free-form optimization procedure which naturally incorpo­
rates conjugate priors, and emerge in standard forms, only one of which is Normal. 
They are computed via an iterative algorithm that is closely related to Expectation 
Maximization (EM) and whose convergence is guaranteed. No Hessian needs to 
be computed. In addition, averaging over models to compute predictive quantities 
can be performed analytically. Model selection is done using the posterior over 
structure; in particular, the BIC/MDL criteria emerge as a limiting case. 

2 General Framework 

We restrict our attention in this paper to directed acyclic graphs (DAGs, a.k.a. 
Bayesian networks). Let Y = {y., ... ,YN} denote the visible (data) nodes, where 
n = 1, ... , N runs over the data instances, and let X = {Xl, ... , XN} denote the 
hidden nodes. Let e denote the parameters, which are simply additional hidden 
nodes with their own distributions. A model with a fixed structure m is fully defined 
by the joint distribution p(Y, X, elm). In a DAG, this joint factorizes over the 
nodes, i.e. p(Y,X I e,m) = TIiP(Ui I pai,Oi,m), where Ui E YUX, pai is the set 
of parents of Ui, and Oi E e parametrize the edges directed toward Ui. In addition, 
we usually assume independent instances, p(Y, X Ie, m) = TIn p(y n, Xn Ie, m). 

We shall also consider a set of structures m E M, where m controls the number 
of hidden nodes and the functional forms of the dependencies p( Ui I pai , 0 i, m), 
including the range of values assumed by each node (e.g., the number of components 
in a mixture model). Associated with the set of structures is a structure prior p( m). 

Marginal likelihood and posterior over parameters. For a fixed structure m, 
we are interested in two quantities. The first is the parameter posterior distribution 
p(e I Y,m). The second is the marginal likelihood p(Y I m), also known as the 
evidence assigned to structure m by the data. In the following, the reference to m is 
usually omitted but is always implied. Both quantities are obtained from the joint 
p(Y, X, elm). For models with no hidden nodes the required computations can 
often be performed analytically. However, in the presence of hidden nodes, these 
quantities become computationally intractable. We shall approximate them using 
a variational approach as follows. 

Consider the joint posterior p(X, elY) over hidden nodes and parameters. Since 
it is intractable, consider a variational posterior q(X, elY), which is restricted to 
the factorized form 

q(X, elY) = q(X I Y)q(e I Y) , (1) 

wher"e given the data, the parameters and hidden nodes are independent. This 
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restriction is the key: It makes q approximate but tractable. Notice that we do 
not require complete factorization, as the parameters and hidden nodes may still 
be correlated amongst themselves. 

We compute q by optimizing a cost function Fm[q] defined by 

Fm[q] = ! dE> q(X)q(E» log ~~i~(:j ~ logp(Y I m) , (2) 

where the inequality holds for an arbitrary q and follows from Jensen's inequality 
(see [6]); it becomes an equality when q is the true posterior. Note that q is always 
understood to include conditioning on Y as in (1). Since Fm is bounded from above 
by the marginal likelihood, we can obtain the optimal posteriors by maximizing it 
w.r.t. q. This can be shown to be equivalent to minimizing the KL distance between 
q and the true posterior. Thus, optimizing Fm produces the best approximation to 
the true posterior within the space of distributions satisfying (1), as well as the 
tightest lower bound on the true marginal likelihood. 

Penalizing complex models. To see that the VB objective function Fm penalizes 
complexity, it is useful to rewrite it as 

p(Y, X I E» 
Fm = (log q(X) )X,9 - KL[q(E» II p(E»] , (3) 

where the average in the first term on the r.h.s. is taken w.r.t. q(X, E». The first 
term corresponds to the (averaged) likelihood. The second term is the KL distance 
between the prior and posterior over the parameters. As the number of parameters 
increases, the KL distance follows and consequently reduces Fm. 

This penalized likelihood interpretation becomes transparent in the large sample 
limit N -7 00, where the parameter posterior is sharply peaked about the most 
probable value E> = E>o. It can then be shown that the KL penalty reduces to 
(I E>o 1/2) log N, which is linear in the number of parameters I E>o I of structure m. 
Fm then corresponds precisely the Bayesian information criterion (BIC) and the 
minimum description length criterion (MDL) (see [3]). Thus, these popular model 
selection criteria follow as a limiting case of the VB framework. 

Free-form optimization and an EM-like algorithm. Rather than assuming a 
specific parametric form for the posteriors, we let them fall out of free-form opti­
mization of the VB objective function. This results in an iterative algorithm directly 
analogous to ordinary EM. In the E-step, we compute the posterior over the hidden 
nodes by solving 8Fm/8q(X) = 0 to get 

q(X) ex e(log p(Y,XI9»e , 

where the average is taken w.r.t. q(E». 

(4) 

In the M-step, rather than the 'optimal' parameters, we compute the posterior 
distribution over the parameters by solving 8Fm/8q(E» = 0 to get 

q(E» ex e(IOgp(y,X I9»xp (E» , (5) 

where the average is taken w.r.t. q(X). 

This is where the concept of conjugate priors becomes useful. Denoting the expo­
nential term on the r.h.s. of (5) by f(E», we choose the prior p(E» from a family of 
distributions such that q(E» ex f(E»p(E» belongs to that same family. p(E» is then 
said to be conjugate to f(E». This procedure allows us to select a prior from a fairly 
large family of distributions (which includes non-informative ones as limiting cases) 
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and thus not compromise generality, while facilitating mathematical simplicity and 
elegance. In particular, learning in the VB framework simply amounts to updat­
ing the hyperparameters, i.e., transforming the prior parameters to the posterior 
parameters. We point out that, while the use of conjugate priors is widespread in 
statistics, so far they could only be applied to models where all nodes were visible. 

Structure posterior. To compute q(m) we exploit Jensen's inequal­
ity once again to define a more general objective function, .1'[q] -
l:mEM q(m) [.1'm + logp(m)jq(m)] ~ 10gp(Y), where now q = q(X I m, Y)q(8 I 
m, Y)q( m I Y) . After computing .1' m for each m EM, the structure posterior is 
obtained by free-form optimization of .1': 

q(m) ex e:Frnp(m) . (6) 

Hence, prior assumptions about the likelihood of different structures, encoded by 
the prior p( m), affect the selection of optimal model structures performed according 
to q( m), as they should. 

Predictive quantities. The ultimate goal of Bayesian inference is to estimate 
predictive quantities, such as a density or regression function. Generally, these 
quantities are computed by averaging over all models, weighting each model by 
its posterior. In the VB framework, exact model averaging is approximated by 
replacing the true posterior p(8 I Y) by the variational q(8 I Y). In density 
estimation, for example, the density assigned to a new data point Y is given by 
p(y I Y) = J d8 p(y I 8) q(8 I Y) . 

In some situations (e.g. source separation), an estimate of hidden node values x 
from new data y may be required. The relevant quantity here is the conditional 
p(x I y, Y), from which the most likely value of hidden nodes is extracted. VB 
approximates it by p(x I y, Y) ex J d8 p(y, x I 8) q(8 I Y). 

3 Variational Bayes Mixture Models 

Mixture models have been investigated and analyzed extensively over many years. 
However, the well known problems of regularizing against likelihood divergences and 
of determining the required number of mixture components are still open. Whereas 
in theory the Bayesian approach provides a solution, no satisfactory practical al­
gorithm has emerged from the application of involved sampling techniques (e.g., 
[7]) and approximation methods [3] to this problem. We now present the solution 
provided by VB. 

We consider models of the form 
m 

P(Yn I 8,m) = LP(Yn I Sn = s,8) p(sn = s I 8), (7) 
s=1 

where Yn denotes the nth observed data vector, and Sn denotes the hidden compo­
nent that generated it. The components are labeled by s = 1, ... , m, with the struc­
ture parameter m denoting the number of components. Whereas our approach can 
be applied to arbitrary models, for simplicity we consider here Normal component 
distributions, P(Yn I Sn = s, 8) = N(JJ.s' r 8), where I-Ls is the mean and r 8 the pre­
cision (inverse covariance) matrix. The mixing proportions are P(Sn = S I 8) = 'Trs' 

In hindsight, we use conjugate priors on the parameters 8 = {'Trs, I-Ls' rs}. The 
mixing proportions are jointly Dirichlet, p( {'Trs}) = V(..~O), the means (conditioned 
on the preCisions) are Normal, p(l-Ls Irs) = N(pO, f30 r s), and the precisions are 
Wishart, p(r s) = W(vO, ~O). We find that the parameter posterior for a fixed m 
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factorizes into q(8) = q({1I"s})flsq(J.£s,rs). The posteriors are obtained by the 
following iterative algorithm, termed VB-MOG. 

E-step. Compute the responsibilities for instance n using (4): 

,: == q(sn = S I Yn) ex ffs r!/2 e-(Yn-P,)Tr,(Yn-P,)/2 e-d / 2f3• , (8) 

noting that here X = S and q(S) = TIn q(Sn). This expression resembles the re­
sponsibilities in ordinary MLj the differences stem from integrating out the param­
eters. The special quantities in (8) are logffs == (log1l"s) = 1/1()..s) -1/1CLJs' )..s,), 

- d 
logrs == (log I rs I) = Li=l1/1(lIs + 1 - i)/2) - log 1 ~s 1 +dlog2, and 
i\ == (r s) = IIs~;l, where 1/1(x) = dlog r(x)/dx is the digamma function, and 
the averages (-} are taken w.r.t. q(8). The other parameters are described below. 

M-step. Compute the parameter posterior in two stages. First, compute the 
quantities 

1 N 
- '" n 1I"s = N L..J's , 

n=l 

1 N 
- '" n J.£s = N L..J's Yn , 

s n=1 

N 

~ 1 '" n en Lis = N L..J's S' 

s n=l 

(9) 

where C~ = (Yn - f.ts)(Yn - f.ts)T and fls = N7rs. This stage is identical to the 
M-step in ordinary EM where it produces the new parameters. In VB, however, the 
quantities in (9) only help characterize the new parameter posteriors. These posteri­
ors are functionally identical to the priors but have different parameter values. The 
mixing proportions are jointly Dirichlet, q( {11" s}) = D( {)..s}), the means are Normal, 
q(J..ts Irs) = N(ps' /3srs), and the precisions are Wishart, p(rs) = W(lIs, ~s). The 
posterior parameters are updated in the second stage, using the simple rules 

)..s fls +)..0, Ps = (flsf.ts + /3opO)/(Ns +~) , /3s = fls + /30 , (10) 
- 0 - - - 0 - 0- aT - a ° lis = Ns + II, ~s = NsEs + Ns/3 (J.£s - P )(I's - P ) /(Ns + f3 ) + ~ . 

The final values of the posterior parameters form the output of the VB-MOG. We 
remark that (a) Whereas no specific assumptions have been made about them, the 
parameter posteriors emerge in suitable, non-trivial (and generally non-Normal) 
functional forms. (b) The computational overhead of the VB-MOG compared to 
EM is minimal. (c) The covariance of the parameter posterior is O(l/N), and VB­
MOG reduces to EM (regularized by the priors) as N ~ 00. (d) VB-MOG has no 
divergence problems. (e) Stability is guaranteed by the existence of an objective 
function. (f) Finally, the approximate marginal likelihood Fm , required to optimize 
the number of components via (6), can also be obtained in closed form (omitted). 

Predictive Density. Using our posteriors, we can integrate out the parameters 
and show that the density assigned by the model to a new data vector Y is a mixture 
of Student-t distributions, 

m 

(11) 
s=1 

where component S has Ws = lis + 1 - d d.o.f., mean Ps' covariance As = «/3s + 
1)/ /3sws)~s, and proportion 7rs = )..s/ Ls' )..s" (11) reduces to a MOG as N ~ 00. 

Nonlinear Regression. We may divide each data vector into input and out­
put parts, Y = (yi,y o ), and use the model to estimate the regression function 
yO = f(yi) and error spheres. These may be extracted from the conditional 
p(yO I yt, Y) = L:n=l Ws tw~ (yO I p~, A~), which also turns out to be a mixture 
of Student-t distributions, with means p~ being linear, and covariances A~ and mix­
ing proportions Ws nonlinear, in yi, and given in terms of the posterior parameters. 
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Figure 1: VB-MOG applied to handwritten digit recognition. 
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VB-MOG was applied to the Boston housing dataset (UCI machine learning repos­
itory), where 13 inputs are used to predict the single output, a house's price. 100 
random divisions of the N = 506 dataset into 481 training and 25 test points were 
used, resulting in an average MSE of 11.9. Whereas ours is not a discriminative 
method, it was nevertheless competitive with Breiman's (1994) bagging technique 
using regression trees (MSE=11.7). For comparison, EM achieved MSE=14.6. 

Classification. Here, a separate parameter posterior is computed for each class c 
from a training dataset yc. Test data vector y is then classified according to the 
conditional p(c I y, {yC}), which has a form identical to (11) (with c-dependent 
parameters) multiplied by the relative size of yc. 

VB-MOG was applied to the Buffalo post office dataset, which contains 1100 exam­
ples for each digit 0 - 9. Each digit is a gray-level 8 x 8 pixel array (see examples 
in Fig. 1 (left)). We used 10 random 500-digit batches for training, and a separate 
batch of 200 for testing. An average misclassification rate of .018 was obtained 
using m = 30 components; EM achieved .025. The misclassification histograms 
(VB=solid, EM=dashed) are shown in Fig. 1 (right). 

4 VB and Intractable Models: a Blind Separation Example 

The discussion so far assumed that a free-form optimization of the VB objective 
function is feasible. Unfortunately, for many interesting models, in particular mod­
els where ordinary ML is intractable, this is not the case. For such models, we 
modify the VB procedure as follows: (a) Specify a parametric functional form for 
the posterior over the hidden nodes q(X) , and optimize w.r.t. its parameters, in the 
spirit of [8J. (b) Let the parameter posterior q(8) fall out of free-form optimization, 
as before. 

We illustrate this approach in the context of the blind source separation (BSS) 
problem (see, e.g., [1]). This problem is described by Yn = HXn + Un , where Xn is 
an unobserved m-dim source vector at instance n, H is an unknown mixing matrix, 
and the noise Un is Normally distributed with an unknown precision >'1. The task is 
to construct a source estimate xn from the observed d-dim data y. The sources are 
independent and non-Normally distributed. Here we assume the high-kurtosis dis­
tribution p(xi) ex: cosh-\xf /2) , which is appropriate for modeling speech sources. 
One important but heretofore unresolved problem in BSS is determining the num­
ber m of sources from data. Another is to avoid overfitting the mixing matrix. Both 
problems, typical to ML algorithms, can be remedied using VB. 

It is the non-Normal nature ofthe sources that renders the source posterior p(X I Y) 
intractable even before a Bayesian treatment . We use a Normal variational posterior 
q(X) = TIn N(xn lPn' r n) with instance-dependent mean and precision. The 
mixing matrix posterior q(H) then emerges as Normal. For simplicity, >. is optimized 
rather than integrated out. The reSUlting VB-BSS algorithm runs as follows: 
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Figure 2: Application of VB to blind source separation algorithm (see text). 

E-step. Optimize the variational mean Pn by iterating to convergence, for each n, 
the fixed-point equation XfI:T(Yn - HPn) - tanhpn/2 = C- I Pn, where C is the 
source covariance conditioned on the data. The variational precision matrix turns 
out to be n-independent: r n = A. T AA. + 1/2 + C- I . 

M-step. Update the mean and precision of the posterior q(H) (rules omitted). 

This algorithm was applied to ll-dim data generated by linearly mixing 5 lOOmsec­
long speech and music signals obtained from commercial CDs. Gaussian noise were 
added at different SNR levels. A uniform structure prior p( m) = 1/ K for m ~ K 
was used. The resulting posterior over the number of sources (Fig. 2 (left)) is 
peaked at the correct value m = 5. The sources were then reconstructed from test 
data via p(x I y, Y). The log reconstruction error is plotted vs. SNR in Fig. 2 
(right, solid). The ML error (which includes no model averaging) is also shown 
(dashed) and is larger, reflecting overfitting. 

5 Conclusion 

The VB framework is applicable to a large class of graphical models. In fact, it may 
be integrated with the junction tree algorithm to produce general inference engines 
with minimal overhead compared to ML ones. Dirichlet, Normal and Wishart 
posteriors are not special to models treated here but emerge as a general feature. 
Current research efforts include applications to multinomial models and to learning 
the structure of complex dynamic probabilistic networks. 

Acknowledgements 
I thank Matt Beal, Peter Dayan, David Mackay, Carl Rasmussen, and especially Zoubin 
Ghahramani, for important discussions. 

References 
[1) Attias, H. (1999). Independent Factor Analysis. Neural Computation 11, 803-85l. 
[2) Bishop, C.M. (1999). Variational Principal Component Analysis. Proc. 9th ICANN. 
[3) Chickering, D.M. & Heckerman, D. (1997) . Efficient approximations for the marginal 
likelihood of Bayesian networks with hidden variables. Machine Learning 29, 181-212. 
[4) Hinton, G.E. & Van Camp, D. (1993). Keeping neural networks simple by minimizing 
the description length of the weights. Proc. 6th COLT, 5-13. 
[5) Jaakkola, T. & Jordan, M.L (1997). Bayesian logistic regression: A variational ap­
proach. Statistics and Artificial Intelligence 6 (Smyth, P. & Madigan, D., Eds). 
[6) Neal, R.M. & Hinton, G.E. (1998). A view of the EM algorithm that justifies incre­
mental, sparse, and other variants. Learning in Graphical Models, 355-368 (Jordan, M.L, 
Ed). Kluwer Academic Press, Norwell, MA. 
[7) Richardson, S. & Green, P.J. (1997). On Bayesian analysis of mixtures with an un­
known number of components. Journal of the Royal Statistical Society B, 59, 731-792. 
[8) Saul, L.K., Jaakkola, T., & Jordan, M.I. (1996). Mean field theory of sigmoid belief 
networks. Journal of Artificial Intelligence Research 4, 61-76. 
[9) Waterhouse, S., Mackay, D., & Robinson, T. (1996). Bayesian methods for mixture of 
experts. NIPS-8 (Touretzky, D.S. et aI , Eds). MIT Press. 


