Kirchoff Law Markov Fields for Analog
Circuit Design

Richard M. Golden *
RMG Consulting Inc.
2000 Fresno Road, Plano, Texas 75074
RMGCONSULT@AOL.COM,
www.neural-network.com

Abstract

Three contributions to developing an algorithm for assisting engi-
neers in designing analog circuits are provided in this paper. First,
a method for representing highly nonlinear and non-continuous
analog circuits using Kirchoff current law potential functions within
the context of a Markov field is described. Second, a relatively effi-
cient algorithm for optimizing the Markov field objective function
is briefly described and the convergence proof is briefly sketched.
And third, empirical results illustrating the strengths and limita-
tions of the approach are provided within the context of a JFET
transistor design problem. The proposed algorithm generated a set
of circuit components for the JFET circuit model that accurately
generated the desired characteristic curves.

1 Analog circuit design using Markov random fields

1.1 Markov random field models

A Markov random field (MRF) is a generalization of the concept of a Markov chain.
In a Markov field one begins with a set of random variables and a neighborhood re-
lation which is represented by a graph. Each random variable will be assumed in
this paper to be a discrete random variable which takes on one of a finite number
of possible values. Each node of the graph indexs a specific random variable. A
link from the jth node to the ith node indicates that the conditional probability
distribution of the ith random variable in the field is functionally dependent upon
the jth random variable. That is, random variable j is a neighbor of random vari-
able ¢. The only restriction upon the definition of a Markov field (i.e., the positivity
condition) is that the probability of every realization of the field is strictly posi-
tive. The essential idea behind Markov field design is that one specifies a potential
(energy) function for every clique in the neighborhood graph such that the subset
of random variables associated with that clique obtain their optimal values when
that clique’s potential function obtains its minimal value (for reviews see [1]-[2]).
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Markov random field models provide a convenient mechanism for probabilistically
representing and optimally combining combinations of local constraints.

1.2 Analog circuit design using SPICE

In some mixed signal ASIC (Application Specific Integrated Circuit) design prob-
lems, most of the circuit design specifications are well known but the introduction
of a single constraint (e.g., an increase in substrate noise) could result in a major
redesign of an entire circuit. The industry standard tool for aiding engineers in
solving analog circuit design problems is SPICE which is a software environment
for simulation of large scale electronic circuits. SPICE does have special optimiza-
tion options for fitting circuit parameters to desired input-output characteristics
but typically such constraints are too weak for SPICE to solve analog circuit de-
sign problems with large numbers of free parameters (see [3] for an introduction to
SPICE). Another difficulty with using SPICE is that it does not provide a global
confidence factor for indicating its confidence in a generated design or local confi-
dence factors for determining the locations of "weak points” in the automatically
generated circuit design solution.

1.3 Markov field approaches to analog circuit design

In this paper, an approach for solving real-world analog circuit design problems us-
ing an appropriately constructed Markov random is proposed which will be referred
to as MRFSPICE. Not only are desired input-output characteristics directly incor-
porated into the construction of the potential functions for the Markov field but
additional constraints based upon Kirchoff’s current law are directly incorporated
into the field. This approach thus differs from the classic SPICE methodology be-
cause Kirchoff current law constraints are explicitly incorporated into an objective
function which is minimized by the "optimal design”. This approach also differs
from previous Markov field approaches (i.e., the "Harmony” neural network model
[4] and the ”Brain-State-in-a-Box” neural network model [5]) designed to qualita-
tively model human understanding of electronic circuit behavior since those ap-
proaches used pair-wise correlational (quadratic) potential functions as opposed to
the highly nonlinear potential functions that will be used in the approach described
in this paper.

1.4 Key contributions

This paper thus makes three important contributions to the application of Markov
random fields to the analog circuit design problem. First, a method for represent-
ing highly nonlinear and non-continuous analog circuits using Kirchoff current law
potential functions within the context of a Markov field is described. Second, a
relatively efficient algorithm for optimizing the Markov field objective function is
briefly described and the convergence proof is briefly sketched. And third, empirical
results illustrating the strengths and limitations of the approach is provided within
the context of a JFET transistor design problem.

2 Modeling assumptions and algorithms

2.1 Probabilistic modeling assumptions

A given circuit circuit design problem consists of a number of design decision vari-
ables. Denote those design decision variables by the discrete random variables
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Zy,...,%Z4. Let the MRF be denoted by the set X = [£;,...,%4] so that a realiza-
tion of X is the d-dimensional real vector x. A realization of X is referred to as a
circuit design solution.

Let the joint (global) probability mass function for X be denoted by pg. It is
assumed that pg(x) > pg(y) if and only if the circuit design solution x is preferred
to the circuit design solution y. Thus, pg(x) specifies a type of probabilistic fuzzy
measure [1].

For example, the random variable Z; might refer to a design decision concerning
the choice of a particular value for a capacitor C14. From previous experience,
it is expected that the value of Cj4 may be usually constrained without serious
difficulties to one of ten possible values:

0.1uF, 0.2uF, 0.3F, 0.4uF, 0.5 F, 0.6uF, 0.7uF, 0.8uF, 0.9uF, or 1uF.

Thus, k; = 10 in this example. By limiting the choice of C}4 to a small number of
finite values, this permits the introduction of design ezpertise hints directly into the
problem formulation without making strong committments to the ultimate choice of
the value of capacitor Cy4. Other examples of design decision variable values include:
resistor values, inductor values, transistor types, diode types, or even fundamentally
different circuit topologies.

The problem that is now considered will be to assign design preference probabilities
in a meaningful way to alternative design solutions. The strategy for doing this will
be based upon constructing pg with the property that if pg(x) > pg(y), then circuit
design solution x exhibits the requisite operating characteristics with respect to a
set of M "test circuits” more effectively than circuit design solution y. An optimal
analog circuit design solution x* then may be defined as a global maximum of pg.
The specific details of this strategy for constructing pe are now discussed by first
carefully defining the concept of a ”test circuit”.

Let V = {0,1,2,...,m} be a finite set of integers (i.e., the unique "terminals” in
the test circuit) which index a set of m complex numbers, vg,v1,v2,...,Vm Which
will be referred to as voltages. The magnitude of v, indicates the voltage magnitude
while the angle of v; indicates the voltage phase shift. By convention the ground
voltage, vo, is always assigned the value of 0. Let d € V x V (i.e., an ordered pair
of elements in V). A circuit component current source is defined with respect to V
by a complex-valued function 7, 5 whose value is typically functionally dependent
upon v, and vy but may also be functionally dependent upon other voltages and
circuit component current sources associated with V.

For example, a "resistor” circuit component current source would be modeled by
choosing i, 4 = (vs — v,)/R where R is the resistance in ohms of some resistor, v is
the voltage observed on one terminal of the resistor, and v, is the voltage observed
on the other terminal of the resistor. The quantity i, s is the current flowing through
the resistor from terminal a to terminal b. Similarly, a ”capacitor” circuit component
current source would be modeled by choosing i, 5 = (vs—v,)/[27] f] where j = v—-1
and f is the frequency in Hz of the test circuit. A "frequency specific voltage
controlled current source” circuit component current source may be modeled by
making 7, 5 functionally dependent upon some subset of voltages in the test circuit.
See [6] for additional details regarding the use of complex arithmetic for analog
circuit analysis and design.

An important design constraint is that Kirchoff’s current law should be satisfied
at every voltage node. Kirchoff’s current law states that the sum of the currents
entering a voltage node must be equal to zero [6]. We will now show how this
physical law can be directly embodied as a system of nonlinear constraints on the
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behavior of the MRF.

We say that the kth voltage node in test circuit g is clamped if the voltage vy is
known. For example, node k in circuit ¢ might be directly grounded, node k might
be directly connected to a grounded voltage source, or the voltage at node k, v,
might be a desired known target voltage.

If voltage node k in test circuit g is clamped, then Kirchoff’s current law at voltage
node k in circuit g is simply assumed to be satisfied which, in turn, implies that the
voltage potential function ®, = 0.

Now suppose that voltage node k in test circuit g is not clamped. This means
that the voltage at node k must be estimated. If there are no controlled current
sources in the test circuit (i.e., only passive devices), then the values of the voltages
at the unclamped nodes in the circuit can be calculated by solving a system of
linear equations where the current choice of circuit component values are treated
as constants. In the more general case where controlled current sources exist in the
test circuit, then an approximate iterative gradient descent algorithm (such as the
algorithm used by SPICE) is used to obtain improved estimates of the voltages of
the unclamped nodes. The iterative algorithm is always run for a fixed number of
iterations.

Now the value of 'I'q ¢ must be computed. The current entering node k via arc
j in test circuit g is denoted by the two-dimensional real vector I} whose first
component is the real part of the complex current and whose second component is
the imaginary part.

The average current entering node k in test circuit g is given by the formula:

= (1/ne) D11

i=1

Design circuit components (e.g., resistors, capacntors diodes, etc.) which minimize
I" will satisfy Kirchoff’s current law at node k in test circuit g. However, the
measure I} is an not entirely adequate indicator of the degree to which Kirchoff’s
current law is satisfied since f: may be small in magnitude not necessarily because
Kirchoff’s current law is satisfied but simply because all currents entering node k are
small in magnitude. To compensate for this problem a normalized current signal
magnitude to current signal variability ratio is minimized at node k in test circuit
g. This ratio decreases in magnitude if I{ has a magmtude which is small relative
to the magnitude of individual currents entermg node k in test circuit g.

The voltage potential function, ®,, for voltage node k in test circuit g is now
formally defined as follows. Let

Nk
Qi = (1/ne) D_(AF; - IHAL,; - TIDT.
j=1
Let Aj,...,As be those eigenvalues of Qi , whose values are strictly greater than

some small positive number €. Let e; be the eigenvector associated with eigenvalue
Ai. Define

u
Qip = D_(1/\)esef
j=1
Thus, if Qi ¢ has all positive eigenvalues, then Qg ¢ is simply the matrix inverse of
Q;;. Using this notation, the voltage potential function for the unclamped voltage












