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Abstract 

Invariance to topographic transformations such as translation and 
shearing in an image has been successfully incorporated into feed­
forward mechanisms, e.g., "convolutional neural networks", "tan­
gent propagation". We describe a way to add transformation invari­
ance to a generative density model by approximating the nonlinear 
transformation manifold by a discrete set of transformations. An 
EM algorithm for the original model can be extended to the new 
model by computing expectations over the set of transformations. 
We show how to add a discrete transformation variable to Gaussian 
mixture modeling, factor analysis and mixtures of factor analysis. 
We give results on filtering microscopy images, face and facial pose 
clustering, and handwritten digit modeling and recognition. 

1 Introduction 

Imagine what happens to the point in the N-dimensional space corresponding to an 
N-pixel image of an object, while the object is deformed by shearing. A very small 
amount of shearing will move the point only slightly, so deforming the object by 
shearing will trace a continuous curve in the space of pixel intensities. As illustrated 
in Fig. la, extensive levels of shearing will produce a highly nonlinear curve (consider 
shearing a thin vertical line ), although the curve can be approximated by a straight 
line locally. 

Linear approximations of the transformation manifold have been used to signif­
icantly improve the performance of feedforward discriminative classifiers such as 
nearest neighbors (Simard et al., 1993) and multilayer perceptrons (Simard et al., 
1992). Linear generative models (factor analysis, mixtures of factor analysis) have 
also been modified using linear approximations of the transformation manifold to 
build in some degree of transformation invariance (Hinton et al., 1997). 

In general, the linear approximation is accurate for transformations that couple 
neighboring pixels, but is inaccurate for transformations that couple nonneighboring 
pixels. In some applications (e.g., handwritten digit recognition), the input can be 
blurred so that the linear approximation becomes more robust. 

For significant levels of transformation, the nonlinear manifold can be better mod­
eled using a discrete approximation. For example, the curve in Fig. 1a can be 
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Figure 1: (a) An N-pixel greyscale image is represented by a point (unfilled disc) in an N­
dimensional space. When the object being imaged is deformed by shearing. the point moves 
along a continuous curve. Locally. the curve is linear. but high levels of shearing produce a 
highly nonlinear curve. which we approximate by discrete points (filled discs) indexed bye. (b) 
A graphical model showing how a discrete transformation variable e can be added to a density 
model p(z) for a latent image z to model the observed image x . The Gaussian pdf p(xle, z) 
captures the eth transformation plus a small amount of pixel noise. (We use a box to represent 
variables that have Gaussian conditional pdfs.) We have explored (c) transformed mixtures 
of Gaussians. where c is a discrete cluster index; (d) transformed component analysis (TeA). 
where y is a vector of Gaussian factors. some of which may model locally linear transformation 
perturbations; and (e) mixtures of transformed component analyzers. or transformed mixtures 
of factor analyzers. 

represented by a set of points (filled discs). In this approach, a discrete set of possi­
ble transformations is specified beforehand and parameters are learned so that the 
model is invariant to the set of transformations. This approach has been used to 
design "convolutional neural networks" that are invariant to translation (Le Cun 
et al., 1998) and to develop a general purpose learning algorithm for generative 
topographic maps (Bishop et al., 1998) . 

We describe how invariance to a discrete set of known transformations (like transla­
tion) can be built into a generative density model and we show how an EM algorithm 
for the original density model can be extended to the new model by computing ex­
pectations over the set of transformations. We give results for 5 different types of 
experiment involving translation and shearing. 

2 Transformation as a Discrete Latent Variable 

We represent transformation f by a sparse transformation generating matrix G e that 
operates on a vector of pixel intensities. For example, integer-pixel translations of 
an image can be represented by permutation matrices. Although other types of 
transformation matrix may not be accurately represented by permutation matrices, 
many useful types of transformation can be represented by sparse transformation 
matrices. For example, rotation and blurring can be represented by matrices that 
have a small number of nonzero elements per row (e.g., at most 6 for rotations). 

The observed image x is linked to the nontransformed latent image z and the 
transformation index f E {I, ... , L} as follows: 

p(xlf, z) = N(x; Gez, w), (1) 

where W is a diagonal matrix of pixel noise variances. Since the probability of 
a transformation may depend on the latent image, the joint distribution over the 
latent image z, the transformation index f and the observed image x is 

p(x, f, z) = N(x; Gez, w)P(flz)p(z). (2) 

The corresponding graphical model is shown in Fig. lb. For example, to model noisy 
transformed images of just one shape, we choose p(z) to be a Gaussian distribution. 
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2.1 Transformed mixtures of Gaussians (TMG). Fig. lc shows the graph­
ical model for a TMG, where different clusters may havp. different transformation 
probabilities. Cluster c has mixing proportion 7rc , mean /-tc and diagonal covariance 
matrix ~ c. The joint distribution is 

(3) 

where the probability of transformation f for cluster c is Plc. Marginalizing over 
the latent image gives the cluster/transformation conditional likelihood, 

(4) 

which can be used to compute p(x) and the cluster/transformation responsibility 
P(f, clx). This likelihood looks like the likelihood for a mixture of factor analyzers 
(Ghahramani and Hinton, 1997). However, whereas the likelihood computation for 
N latent pixels takes order N 3 time in a mixture of factor analyzers, it takes linear 
time, order N, in a TMG, because Gl~cG'I + W is sparse. 

2.2 Transformed component analysis (TCA). Fig. Id shows the graphical 
model for TCA (or "transformed factor analysis"). The latent image is modeled 
using linearly combined Gaussian factors, y. The joint distribution is 

p(x, f, z, y) = N(x; Glz, w)N(z; /-t + Ay, ~ )N(y; 0, I)Pl, (5) 

where /-t is the mean of the latent image, A is a matrix of latent image components 
(the factor loading matrix) and ~ is a diagonal noise covariance matrix for the latent 
image. Marginalizing over the factors and the latent image gives the transformation 
conditional likelihood, 

p(xlf) = N(x; Gl/-t, Gl(AA T + ~)G'I + w), (6) 

which can be used to compute p(x) and the transformation responsibility p(flx). 
Gl(AA T + ~)G'I is not sparse, so computing this likelihood exactly takes N 3 

time. However, the likelihood can be computed in linear time if we assume 
IGl(AA T + f))G'I + wi ~ IGl(AAT + ~)G'II, which corresponds to assuming 
that the observed noise is smaller than the variation due to the latent image, or 
that the observed noise is accounted for by the latent noise model, ~. In our ex­
periments, this approximation did not lead to degenerate behavior and produced 
useful models. 

By setting columns of A equal to the derivatives of /-t with respect to continuous 
transformation parameters, a TCA can accommodate both a local linear approxi­
mation and a discrete approximation to the transformation manifold. 

2.3 Mixtures of transformed component analyzers (MTCA). A combi­
nation of a TMG and a TCA can be used to jointly model clusters, linear compo­
nents and transformations. Alternatively, a mixture of Gaussians that is invariant 
to a discrete set of transformations and locally linear transformations can be ob­
tained by combining a TMG with a TCA whose components are all set equal to 
transformation derivatives. 

The joint distribution for the combined model in Fig. Ie is 

p(x, f, z, c, y) = N(x; GlZ, w)N(z; /-tc + AcY, ~c)N(y; 0, I)Plc7rc. (7) 

The cluster/transformation likelihood is p(xlf,c) = N(X;Gl/-tc,Gl(AcA; + 
~c)G'I + w), which can be approximated in linear time as for TCA. 
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3 Mixed Transformed Component Analysis (MTCA) 

We present an EM algorithm for MTCA; EM algorithms for TMG or TCA emerge 
by setting the number of factors to 0 or setting the number of clusters to 1. 

Let 0 represent a parameter in the generative model. For Li.d. data, the derivative 
of the log-likelihood of a training set Xl, ... ,XT with respect to 0 can be written 

T 8 10gp(XI , ... ,XT) '"' [8 IJ)I ] 
80 = ~ E 80 logp(xt, c, (., Z, Y Xt , 

t=l 
(8) 

where the expectation is taken over p(c, f, z, ylxt). The EM algorithm iteratively 
solves for a new set of parameters using the old parameters to compute the expec­
tations. This procedure consistently increases the likelihood of the training data. 

By setting (8) to 0 and solving for the new parameter values, we obtain update equa­
tions based on the expectations given in the Appendix. Notation: (-) = .!. Ei=l (.) 
is a sufficient statistic computed by averaging over the training set; diag(A) gives a 
vector containing the diagonal elements of matrix A; diag(a) gives a diagonal matrix 
whose diagonal contains the elements of vector a; and a 0 h gives the element-wise 
product of vectors a and h. Denoting the updated parameters by "-", we have 

ire = (P(cJXt)), he = (P(flxt, c)), (9) 

_ (P(clxt)E[z - AeyIXt,c]) 
J.£e = (P(cIXt)) , 

- diag( (P( cIXt)E[(z - J.£e - AeY) 0 (z - J.£e - Aey)IXt, cD) 
~e = (P(cIXt)) , 

~ = diag( (E[(Xt -GiZ)O(Xt - Giz)IXtD), 

Ae = (P(cJxdE[(z - J.£e)yTlxtl)(P(cIXt)E[yyTlxtD-I. 

(10) 

(11) 

(12) 

(13) 
To reduce the number of parameters, we will sometimes assume Pic does not depend 
on c or even that Pic is held constant at a uniform distribution. 

4 Experiments 

4.1 Filtering Images from a Scanning Electron Microscope (SEM). 
SEM images (e.g., Fig. 2a) can have a very low signal to noise ratio due to a 
high variance in electron emission rate and modulation of this variance by the im­
aged material (Golem and Cohen, 1998). To reduce noise, multiple images are 
usually averaged and the pixel variances can be used to estimate certainty in ren­
dered structures. Fig. 2b shows the estimated means and variances of the pixels 
from 230 140 x 56 SEM images like the ones in Fig. 2a. In fact, averaging images 
does not take into account spatial uncertainties and filtering in the imaging process 
introduced by the electron detectors and the high-speed electrical circuits. 

We trained a single-cluster TMG with 5 horizontal shifts and 5 vertical shifts on 
the 230 SEM images using 30 iterations of EM. To keep the number of parameters 
almost equal to the number of parameters estimated using simple averaging, the 
transformation probabilities were not learned and the pixel variances in the observed 
image were set equal after each M step. So, TMG had 1 more parameter. Fig. 2c 
shows the mean and variance learned by the TMG. Compared to simple averaging, 
the TMG finds sharper, more detailed structure. The variances are significantly 
lower, indicating that the TMG produces a more confident estimate of the image. 
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(a) (b) 

(e) 

Figure 2: (a) 140 x 56 pixel SEM images. (b) The mean and variance of the image pixels. 
(c) The mean and variance found by a TMG reveal more structure and less uncertainty. 
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Figure 3: (a) Frontal face images of two people. (b) Cluster means learned by a TMG and 
(c) a mixture of Gaussians. (d) Images of one person with different poses. (e) Cluster means 
learned by a TMG. (f) Less detailed cluster means learned by a mixture of Gaussians. (g) Mean 
and first 4 principal components of the data. which mostly model lighting and translation. 

4.2 Clustering Faces and Poses. Fig. 3a shows examples from a training 
set of 400 jerky images of two people walking across a cluttered background. We 
trained a TMG with 4 clusters, 11 horizontal shifts and 11 vertical shifts using 
15 iterations of EM after initializing the weights to small, random values. The 
loop-rich MATLAB script executed in 40 minutes on a 500MHz Pentium processor. 
Fig. 3b shows the cluster means, which include two sharp representations of each 
person's face, with the background clutter suppressed. Fig. 3c shows the much 
blurrier means for a mixture of Gaussians trained using 15 iterations of EM. 

Fig. 3d shows examples from a training set of 400 jerky images of one person with 
different poses. We trained a TMG with 5 clusters, 11 horizontal shifts and 11 
vertical shifts using 40 iterations of EM. Fig. 3e shows the cluster means, which 
capture 4 poses and mostly suppress the background clutter. The mean for cluster 
4 includes part of the background, but this cluster also has a low mixing proportion 
of 0.1. A traditional mixture of Gaussians trained using 40 iterations of EM finds 
blurrier means, as shown in Fig. 3f. The first 4 principal components mostly try to 
account for lighting and translation, as shown in Fig. 3g. 
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(d) (e) (f) 

Figure 4: Modeling handwritten digits. (a) Means and components and (b) the sheared + 
translated means (dimmed transformations have low probability) for each of 10 TCA models 
trained on 200 examples of each digit. (c) Means and components of 10 FA models trained 
on the same data. (d) Digits generated from the 10 TCA models and (e) the 10 FA models. 
(f) The means for a mixture of 10 Gaussians, a mixture of 10 factor analyzers and a 10-ciuster 
TMG trained on all 2000 digits. In each case, the best of 10 experiments was selected. 

4.3 Modeling Handwritten Digits. We performed both supervised and un­
supervised learning experiments on 8 x 8 greyscale versions of 2000 digits from the 
CEDAR CDROM (Hull, 1994). Although the preprocessed images fit snugly in the 
8 x 8 window, there is wide variation in "writing angle" (e.g., the vertical stroke 
of the 7 is at different angles). So, we produced a set of 29 shearing+translation 
transformations (see the top row of Fig. 4b) to use in transformed density models. 

In our supervised learning experiments, we trained one 10-component TCA on each 
class of digit using 30 iterations of EM. Fig. 4a shows the mean and 10 components 
for each of the 10 models. The lower 10 rows of images in Fig. 4b show the sheared 
and translated means. In cases where the transformation probability is below 1%, 
the image is dimmed. We also trained one lO-component factor analyzer on each 
class of digit using 30 iterations of EM. The means and components are shown 
in Fig. 4c. The means found by TCA are sharper and whereas the components 
found by factor analysis often account for writing angle (e.g., see the components 
for 7) the components found by TCA tend to account for line thickness and arc 
size. Fig. 4d and e show digits that were randomly generated from the TCAs and 
the factor analyzers. Since different components in the factor analyzers account 
for different stroke angles, the simulated digits often have an extra stroke, whereas 
digits simulated from the TCAs contain fewer spurious strokes. 

To test recognition performance, we trained 10-component factor analyzers and 
TCAs on 200 examples of each digit using 50 iterations of EM. Each set of models 
used Bayes rule to classify 1000 test patterns and while factor analysis gave an error 
rate of 3.2%, TCA gave an error rate of only 2.7%. 

In our unsupervised learning experiments, we fit 10-cluster mixture models to the 
entire set of 2000 digits to see which models could identify all 10 digits. We tried a 
mixture of 10 Gaussians, a mixture of 10 factor analyzers and a lO-cluster TMG. In 
each case, 10 models were trained using 100 iterations of EM and the model with 
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the highest likelihood was selected and is shown in Fig. 4f. Compared to the TMG, 
the first two methods found blurred and repeated classes. After identifying each 
cluster with its most prevalent class of digit, we found that the first two methods 
had error rates of 53% and 49%, but the TMG had a much lower error rate of 26%. 

5 Summary 
In many learning applications, we know beforehand that the data includes transfor­
mations of an easily specified nature (e.g., shearing of digit images). If a generative 
density model is learned from the data, the model must extract a model of both 
the transformations and the more interesting and potentially useful structure. We 
described a way to add transformation invariance to a generative density model by 
approximating the transformation manifold with a discrete set of points. This re­
leases the generative model from needing to model the transformations. 5 different 
types of experiment show that the method is effective and quite efficient. 

Although the time needed by this method scales exponentially with the dimensional­
ity of the transformation manifold, we believe that it will be useful in many practical 
applications and that it illustrates what is possible with a generative model that 
incorporates a latent transformation variable. We are exploring the performance of 
a faster variational learning method and extending the model to time series. 
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Appendix: The Sufficient Statistics Found in the E-Step 

The sufficient statistics for the M-Step are computed in the E-Step using sparse linear algebra dur­
ing a single pass through the training set. Before making this pass, the following matrices are com­
puted: Ot,c = COV(zlx,y,l,c) = (~;l +G~-¥-lGt)-\ (3t,c = COV(ylx,l,c) = (I+A~~;JAc­
A~~;lOt.c~;lAc)-l. For each case in the training set, P(c,llxt) is first computed for each combina­
tion of c, l, before computing E[ylxt,l, c] = {3l,cA~ ~;;-l [Ot ,cGi-¥-lXt - (I-Ot,c~;;-l )I-'c]' E[zlxt, l, c] = 
I-'c +Ot,cG~-¥-l (Xt - Gtl-'c) +Ot~-l Ac{3t,cA~ ~;;-lOt , cG~-¥-J (Xt - Gtl-'c), E[(2J-I.'c}:(2J-I.'c) IXt ,l, c] = 
(E[zlxt ,l,cH.&c}c(E[zlxt ,l,cH.&c)+diag(Ot,c)+diag(Ol , c~;l Ac{3t,cA~ ~;lOt,c), E[(z-l-'c)y'lxt , l, c] = 

(E[zlxt,l, c]-l-'c)E[Ylxt,l, c]' + Ot,c~;l A c{3t ,c' The expectations needed in (10)-(13) are then com­
puted from P(clxt}E[z - AcylXt, c] = Et P(c, lIXt)(E[zIXt, l, c] - AcE[Ylxt,l, cD, P(clxt}E[(z-l-'c­
Acy)o(z-l-'c-AcY) IXt, c] = Et P(c, llxt} {E[(z-l-'c)o(z-I-'C>lxt,l, c] +diag(Acl3t,cA~) - 2diag(AcE[(z­
l-'C>y'lxt, l, en +(AcE[Ylxt, e, c])o(AcE[ylxt, e, cD}, E[(Xt-Gtz)o(Xt-Gtz)lxtl = Ec,t P(c,lIXt) {(Xt­
GtE[zlxt, l, c]) 0 (Xt - GtE[zIXt, l, c]) + diag(GtOt,cGi) + diag(GtOt,c~;l Ac{3t,cA~~;lOt,cG~)}, 
P(clxt}E[(z-l-')y'lxt, c] = El P(c,llxt}E[(z-l-')y'lxt, l, c], P(clxt)E[yy'lxt, c] = Et P(c,llxt}{3t,c + 
Et P(c, llxt)E[ylxt.e, c]E[ylxt.l, c]'. 


