Part of Advances in Neural Information Processing Systems 11 (NIPS 1998)
Nikhil Bhushan, Reza Shadmehr
Based on computational principles, the concept of an internal model for adaptive control has been divided into a forward and an inverse model. However, there is as yet little evidence that learning control by the eNS is through adaptation of one or the other. Here we examine two adaptive control architectures, one based only on the inverse model and other based on a combination of forward and inverse models. We then show that for reaching movements of the hand in novel force fields, only the learning of the forward model results in key characteristics of performance that match the kine(cid:173) matics of human subjects. In contrast, the adaptive control system that relies only on the inverse model fails to produce the kinematic patterns observed in the subjects, despite the fact that it is more stable. Our results provide evidence that learning control of novel dynamics is via formation of a forward model.