
Exploring Unknown Environments with
Real-Time Search or Reinforcement Learning

Sven Koenig
College of Computing, Georgia Institute of Technology

skoenig@cc.gatech.edu

Abstract

Learning Real-Time A* (LRTA*) is a popular control method that interleaves plan­
ning and plan execution and has been shown to solve search problems in known
environments efficiently. In this paper, we apply LRTA * to the problem of getting to
a given goal location in an initially unknown environment. Uninformed LRTA * with
maximal lookahead always moves on a shortest path to the closest unvisited state,
that is, to the closest potential goal state. This was believed to be a good exploration
heuristic, but we show that it does not minimize the worst-case plan-execution time
compared to other uninformed exploration methods. This result is also of interest to
reinforcement-learning researchers since many reinforcement learning methods use
asynchronous dynamic programming, interleave planning and plan execution, and
exhibit optimism in the face of uncertainty, just like LRTA *.

1 Introduction

Real-time (heuristic) search methods are domain-independent control methods that inter­
leave planning and plan execution. They are based on agent-centered search [Dasgupta et
at., 1994; Koenig, 1996], which restricts the search to a small part of the environment that
can be reached from the current state of the agent with a small number of action executions.
This is the part of the environment that is immediately relevant for the agent in its current
situation. The most popular real-time search method is probably the Learning Real-Time
A * (LRTA *) method [Korf, 19901 It has a solid theoretical foundation and the following
advantageous properties: First, it allows for fine-grained control over how much planning
to do between plan executions and thus is an any-time contract algorithm [Russell and Zil­
berstein, 1991]. Second, it can use heuristic knowledge to guide planning, which reduces
planning time without sacrificing solution quality. Third, it can be interrupted at any state
and resume execution at a different state. Fourth, it amortizes learning over several search
episodes, which allows it to find plans with suboptimal plan-execution time fast and then
improve the plan-execution time as it solves similar planning tasks, until its plan-execution
time is optimal. Thus, LRTA * always has a small sum of planning and plan-execution

1004

Initially, u(s) = 0 for all s E S.

1. Scurrent := S s tart.

2. If Scurrent E G, then stop successfully.
3. Generate a local search space Sios ~ S with

S current E Si s s and Siss n G = 0.
4. Update u(s) for all S E Sios (Figure 2).

5. a := one-ofargminaEA(scurrent)
u(succ(S current , a)) .

6. Execute action a.
7. S current := SUCC(Scurrent, a).
8. If Scurrent E Si s", then go to 5.
9. Go to 2.

Figure 1: Uninformed LRTA *

S. Koenig

1. For all S E SI .. : u(s) := 00.

2. If u(s) < 00 for all S E Slss, then return.
3. s' := one-ofargminsEs, •• :u(s)= oo

minaEA(s) u(succ(s, a)) .
4. IfminaEA(sl) u(succ(s' , a)) = 00, then

return.
5. u(s') := 1 + minaEA(s l) u(succ(s' , a)).
6. Go to 2.

Figure 2: Value-Update Step

time, and it minimizes the plan-execution time in the long run in case similar planning tasks
unexpectedly repeat. This is important since no search method that executes actions before
it has solved a planning task completely can guarantee to minimize the plan-execution time
right away.

Real-time search methods have been shown to be efficient alternatives to traditional search
methods in known environments. In this paper, we investigate real-time search methods
in unknown environments. In such environments, real-time search methods allow agents
to gather information early. This information can then be used to resolve some of the
uncertainty and thus reduce the amount of planning done for unencountered situations.

We study robot-exploration tasks without actuator and sensor uncertainty, where the sensors
on-board the robot can uniquely identify its location and the neighboring locations. The
robot does not know the map in advance, and thus has to explore its environment sufficiently
to find the goal and a path to it. A variety of methods can solve these tasks, including LRTA *.
The proceedings of the AAAI-97 Workshop on On-Line Search [Koenig et al., 1997] give
a good overview of some of these techniques. In this paper, we study whether uninformed
LRTA * is able to minimize the worst-case plan-execution time over all state spaces with the
same number of states provided that its lookahead is sufficiently large. Uninformed LRTA *
with maximallookahead always moves on a shortest path to the closest unvisited state, that
is, to the closest potential goal state - it exhibits optimism in the fac\! of uncertainty [Moore
and Atkeson, 19931 We show that this exploration heuristic is not as good as it was believed
to be. This sol ves the central problem left open in [Pemberton and Korf, 1992] and improves
our understanding of LRTA *. Our results also apply to learning control for tasks other than
robot exploration, for example the control tasks studied in [Davies et ai., 19981 They are
also of interest to reinforcement-learning researchers since many reinforcement learning
methods use asynchronous dynamic programming, interleave planning and plan execution,
and exhibit optimism in the face of uncertainty, just like LRTA * [Barto et ai., 1995;
Kearns and Singh, 19981

2 LRTA*

We use the following notation to describe LRTA *: S denotes the finite set of states of the
environment, S3t(Jrt E S the start state, and 0 =I G ~ S the set of goal states. The number
of states is n := lSI. A(s) =I 0 is the finite, nonempty set of actions that can be executed in
state s E S. succ(s, a) denotes the successor state that results from the execution of action
a E A(s) in state s E S. We also use two operators with the following semantics: Given

Exploring Unknown Environments 1005

a set X, the expression "one-of X" returns an element of X according to an arbitrary rule.
A subsequent invocation of "one-of X" can return the same or a different element. The
expression "arg minxEx !(x)" returns the elements x E X that minimize !(x), that is, the
set {x E XI!(x) = minx'Ex !(x')}.

We model environments (topological maps) as state spaces that correspond to undirected
graphs, and assume that it is indeed possible to reach a goal state from the start state. We
measure the distances and thus plan-execution time in action executions, which is reasonable
if every action can be executed in about the same amount of time. The graph is initially
unknown. The robot can always observe whether its current state is a goal state, how many
actions can be executed in it, and which successor states they lead to but not whether the
successor states are goal states. Furthermore, the robot can identify the successor states
when it observes them again at a later point in time. This assumption is realistic, for
example, if the states look sufficiently different or the robot has a global positioning system
(GPS) available.

LRTA * learns a map of the environment and thus needs memory proportional to the number
of states and actions observed. It associates a small amount of information with the states
in its map. In particular, it associates a u-value u(s) with each state s E S. The u-values
approximate the goal distances of the states. They are updated as the search progresses and
used to determine which actions to execute. Figure 1 describes LRTA *: LRTA * first checks
whether it has already reached a goal state and thus can terminate successfully (Line 2). If
not, it generates the local search space S/H ~ S (Line 3). While we require only that the
current state is part of the local search space and the goal states are not [Barto et al., 1995],
in practice LRTA * constructs S/88 by searching forward from the current state. LRTA * then
updates the u-values of all states in the local search space (Line 4), as shown in Figure 2.
The value-update step assigns each state its goal distance under the assumption that the
u-values of all states outside of the local search space correspond to their correct goal
distances. Formally, if u(s) E [0,00] denotes the u-values before the value-update step and
u(s) E [0,00] denotes the u-values afterwards, then u(s) = 1 + mina EA(8) u(succ(s, a))
for all s E S/S8 and u(s) = u(s) otherwise. Based on these u-values, LRTA * decides which
action to execute next (Line 5). It greedily chooses the action that minimizes the u-value of
the successor state (ties are broken arbitrarily) because the u-values approximate the goal
distances and LRTA * attempts to decrease its goal distance as much as possible. Finally,
LRTA * executes the selected action (Line 6) and updates its current state (Line 7). Then, if
the new state is still part of the local search space used previously, LRTA * selects another
action for execution based on the current u-values (Line 8). Otherwise, it iterates (Line 9),
(The behavior of LRTA * with either minimal or maximal lookahead does not change if
Line 8 is deleted.)

3 Plan-Execution Time of LRTA * for Exploration

In this section, we study the behavior of LRTA * with minimal and maximallookaheads in
unknown environments. We assume that no a-priori heuristic knowledge is available and,
thus, that LRTA * is uninformed. In this case, the u-values of all unvisited states are zero
and do not need to be maintained explicitly.

Minimal Lookahead: The lookahead of LRTA * is minimal if the local search space con­
tains only the current state. LRTA * with minimallookahead performs almost no planning
between plan executions. Its behavior in initially known and unknown environments is
identical. Figure 3 shows an example.

Let gd(s) denote the goal distance of state s. Then, according to one of our previous results,
uninformed LRTA * with any lookahead reaches a goal state after at most L 8 E s gd (s) action

executions [Koenig and Simmons, 1995]. Since L8ES gd(s) ~ L7:o1 i = 1/2n2 - 1/2n,

1006

goal

-~
o = visited vertex (known not to be a goal vertex)

o = unvisited (but known) vertex (unknown whether ft is a goal vertex)

• = current vertex 0' the robot

0 3 = u·value of the vertex

= edge trav~sed in at least one direction

= untraversed edge

_ = local search space

LATA" with minimallookahead:

LATA" with maximallookahead:

~
~o

o

start

Figure 3: Example

t
all edge lengths ara one goal

Figure 4: A Planar Undirected Graph

S. Koenig

uninformed LRTA* with any lookahead reaches a goal state after O(n2) action executions.

This upper bound on the plan-execution time is tight in the worst case for uninformed
LRTA * with rninimallookahead, even if the number of actions that can be executed in any
state is bounded from above by a small constant (here: three) . Figure 4, for example, shows
a rectangular grid-world for which uninformed LRTA * with rninimallookahead reaches a
goal state in the worst case only after 8(n 2) action executions. In particular, LRTA * can
traverse the state sequence that is printed by the following program in pseudo code. The
scope of the for-statements is shown by indentation.

for i := n-3 downto n / 2 step 2
for j : = 1 to i step 2

print j
for j : = i+l downto 2 step 2

print j
for i := 1 to n-l step 2

print i

In this case, LRTA * executes 3n 2/16 - 3/4 actions before it reaches the goal state (for
n 2: 2 with n mod 4 = 2). For example, for n = 10, it traverses the state sequence 8), 83,

85,87,88,86,84,82,8),83,85,86,84,82,81,83,85,87, and 89 .

Maximal Lookahead: As we increase the lookahead of LRTA *, we expect that its plan­
execution time tends to decrease because LRTA * uses more information to decide which

Exploring Unknown Environments

t

branches of
length 3

�/�~�

LRTA* is now here

o = visited vertex

o = unvisited vertex

the order in which the remaining
unvisited vertices are visited

t
start

= edge traversed in at least one direction

= untraversed edge

Figure 5: Another Planar Undirected Graph (m = 3)

1007

goal

+

action to execute next. This makes it interesting to study LRTA * with maximallookahead.

The lookahead of LRTA * is maximal in known environments if the local search space
contains all non-goal states. In this case, LRTA * performs a complete search without
interleaving planning and plan execution and follows a shortest path from the start state to
a closest goal state. Thus, it needs gd(Sst art) action executions. No other method can do
better than that.

The maximallookahead ofLRTA * is necessarily smaller in initially unknown environments
than in known environments because its value-update step can only search the known part of
the environment. Therefore, the look ahead of LRTA * is maximal in unknown environments
if the local search space contains all visited non-goal states. Figure 3 shows an example.

Uninformed LRTA * with maximal lookahead always moves on a shortest path to the
closest unvisited state, that is, to the closest potential goal state. This appears to be a
good exploration heuristic. [Pemberton and Korf, 1992] call this behavior "incremental
best-first search," but were not able to prove or disprove whether this locally optimal
search strategy is also globally optimal. Since this exploration heuristic has been used
on real mobile robots [Thrun et al., 1998], we study how well its plan-execution time
compares to the plan-execution time of other uninformed exploration methods. We show
that the worst-case plan-execution time of uninformed LRTA * with maximallookahead in
unknown environments is Q(�I�O�~�~�;� n n) action executions and thus grows faster than linearly
in the number of states n. It follows that the plan-execution time of LRTA * is not optimal
in the worst case, since depth-first search needs a number of action executions in the worst
case that grows only linearly in the number of states.

Consider the graph shown in Figure 5, that is a variation of a graph in [Koenig and Smirnov,
19961. It consists of a stem with several branches. Each branch consists of two parallel
paths of the same length that connect the stem to a single edge. The length of the branch is
the length of each of the two paths. The stem has length mm for some integer m ;:::: 3 and
consists of the vertices Vo, VI , .. . , Vmm. For each integer i with 1 ::; i ::; m there are mm-i

branches of length �:�L�~�~�~� mj each (including branches of length zero). These branches
attach to the stem at the vertices Vj m' for integers j; if i is even, then 0::; j ::; mm-i - 1,
otherwise 1 ::; j ::; mm-i. There is one additional single edge that attaches to vertex Vo .

