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Abstract 

Learning Real-Time A* (LRTA*) is a popular control method that interleaves plan
ning and plan execution and has been shown to solve search problems in known 
environments efficiently. In this paper, we apply LRTA * to the problem of getting to 
a given goal location in an initially unknown environment. Uninformed LRTA * with 
maximal lookahead always moves on a shortest path to the closest unvisited state, 
that is, to the closest potential goal state. This was believed to be a good exploration 
heuristic, but we show that it does not minimize the worst-case plan-execution time 
compared to other uninformed exploration methods. This result is also of interest to 
reinforcement-learning researchers since many reinforcement learning methods use 
asynchronous dynamic programming, interleave planning and plan execution, and 
exhibit optimism in the face of uncertainty, just like LRTA *. 

1 Introduction 

Real-time (heuristic) search methods are domain-independent control methods that inter
leave planning and plan execution. They are based on agent-centered search [Dasgupta et 
at., 1994; Koenig, 1996], which restricts the search to a small part of the environment that 
can be reached from the current state of the agent with a small number of action executions. 
This is the part of the environment that is immediately relevant for the agent in its current 
situation. The most popular real-time search method is probably the Learning Real-Time 
A * (LRTA *) method [Korf, 19901 It has a solid theoretical foundation and the following 
advantageous properties: First, it allows for fine-grained control over how much planning 
to do between plan executions and thus is an any-time contract algorithm [Russell and Zil
berstein, 1991]. Second, it can use heuristic knowledge to guide planning, which reduces 
planning time without sacrificing solution quality. Third, it can be interrupted at any state 
and resume execution at a different state. Fourth, it amortizes learning over several search 
episodes, which allows it to find plans with suboptimal plan-execution time fast and then 
improve the plan-execution time as it solves similar planning tasks, until its plan-execution 
time is optimal. Thus, LRTA * always has a small sum of planning and plan-execution 
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Initially, u( s) = 0 for all s E S. 

1. Scurrent := S s tart. 

2. If Scurrent E G, then stop successfully. 
3. Generate a local search space Sios ~ S with 

S current E Si s s and Siss n G = 0. 
4. Update u( s) for all S E Sios (Figure 2). 

5. a := one-ofargminaEA(scurrent) 
u( succ( S current , a)) . 

6. Execute action a. 
7. S current := SUCC(Scurrent, a). 
8. If Scurrent E Si s", then go to 5. 
9. Go to 2. 

Figure 1: Uninformed LRTA * 
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1. For all S E SI .. : u(s) := 00. 

2. If u( s) < 00 for all S E Slss, then return. 
3. s' := one-ofargminsEs, •• :u(s)= oo 

minaEA(s) u( succ(s, a)) . 
4. IfminaEA(sl) u(succ(s' , a)) = 00, then 

return. 
5. u(s') := 1 + minaEA( s l) u(succ(s' , a)). 
6. Go to 2. 

Figure 2: Value-Update Step 

time, and it minimizes the plan-execution time in the long run in case similar planning tasks 
unexpectedly repeat. This is important since no search method that executes actions before 
it has solved a planning task completely can guarantee to minimize the plan-execution time 
right away. 

Real-time search methods have been shown to be efficient alternatives to traditional search 
methods in known environments. In this paper, we investigate real-time search methods 
in unknown environments. In such environments, real-time search methods allow agents 
to gather information early. This information can then be used to resolve some of the 
uncertainty and thus reduce the amount of planning done for unencountered situations. 

We study robot-exploration tasks without actuator and sensor uncertainty, where the sensors 
on-board the robot can uniquely identify its location and the neighboring locations. The 
robot does not know the map in advance, and thus has to explore its environment sufficiently 
to find the goal and a path to it. A variety of methods can solve these tasks, including LRTA *. 
The proceedings of the AAAI-97 Workshop on On-Line Search [Koenig et al., 1997] give 
a good overview of some of these techniques. In this paper, we study whether uninformed 
LRTA * is able to minimize the worst-case plan-execution time over all state spaces with the 
same number of states provided that its lookahead is sufficiently large. Uninformed LRTA * 
with maximallookahead always moves on a shortest path to the closest unvisited state, that 
is, to the closest potential goal state - it exhibits optimism in the fac\! of uncertainty [Moore 
and Atkeson, 19931 We show that this exploration heuristic is not as good as it was believed 
to be. This sol ves the central problem left open in [Pemberton and Korf, 1992] and improves 
our understanding of LRTA *. Our results also apply to learning control for tasks other than 
robot exploration, for example the control tasks studied in [Davies et ai., 19981 They are 
also of interest to reinforcement-learning researchers since many reinforcement learning 
methods use asynchronous dynamic programming, interleave planning and plan execution, 
and exhibit optimism in the face of uncertainty, just like LRTA * [Barto et ai., 1995; 
Kearns and Singh, 19981 

2 LRTA* 

We use the following notation to describe LRTA *: S denotes the finite set of states of the 
environment, S3t(Jrt E S the start state, and 0 =I G ~ S the set of goal states. The number 
of states is n := lSI. A( s) =I 0 is the finite, nonempty set of actions that can be executed in 
state s E S. succ( s, a) denotes the successor state that results from the execution of action 
a E A(s) in state s E S. We also use two operators with the following semantics: Given 
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a set X, the expression "one-of X" returns an element of X according to an arbitrary rule. 
A subsequent invocation of "one-of X" can return the same or a different element. The 
expression "arg minxEx !(x)" returns the elements x E X that minimize !(x), that is, the 
set {x E XI!(x) = minx'Ex !(x' )}. 

We model environments (topological maps) as state spaces that correspond to undirected 
graphs, and assume that it is indeed possible to reach a goal state from the start state. We 
measure the distances and thus plan-execution time in action executions, which is reasonable 
if every action can be executed in about the same amount of time. The graph is initially 
unknown. The robot can always observe whether its current state is a goal state, how many 
actions can be executed in it, and which successor states they lead to but not whether the 
successor states are goal states. Furthermore, the robot can identify the successor states 
when it observes them again at a later point in time. This assumption is realistic, for 
example, if the states look sufficiently different or the robot has a global positioning system 
(GPS) available. 

LRTA * learns a map of the environment and thus needs memory proportional to the number 
of states and actions observed. It associates a small amount of information with the states 
in its map. In particular, it associates a u-value u(s) with each state s E S. The u-values 
approximate the goal distances of the states. They are updated as the search progresses and 
used to determine which actions to execute. Figure 1 describes LRTA *: LRTA * first checks 
whether it has already reached a goal state and thus can terminate successfully (Line 2). If 
not, it generates the local search space S/H ~ S (Line 3). While we require only that the 
current state is part of the local search space and the goal states are not [Barto et al., 1995], 
in practice LRTA * constructs S/88 by searching forward from the current state. LRTA * then 
updates the u-values of all states in the local search space (Line 4), as shown in Figure 2. 
The value-update step assigns each state its goal distance under the assumption that the 
u-values of all states outside of the local search space correspond to their correct goal 
distances. Formally, if u( s) E [0,00] denotes the u-values before the value-update step and 
u(s) E [0,00] denotes the u-values afterwards, then u(s) = 1 + mina EA(8) u(succ(s, a)) 
for all s E S/S8 and u( s) = u( s) otherwise. Based on these u-values, LRTA * decides which 
action to execute next (Line 5). It greedily chooses the action that minimizes the u-value of 
the successor state (ties are broken arbitrarily) because the u-values approximate the goal 
distances and LRTA * attempts to decrease its goal distance as much as possible. Finally, 
LRTA * executes the selected action (Line 6) and updates its current state (Line 7). Then, if 
the new state is still part of the local search space used previously, LRTA * selects another 
action for execution based on the current u-values (Line 8). Otherwise, it iterates (Line 9), 
(The behavior of LRTA * with either minimal or maximal lookahead does not change if 
Line 8 is deleted.) 

3 Plan-Execution Time of LRTA * for Exploration 

In this section, we study the behavior of LRTA * with minimal and maximallookaheads in 
unknown environments. We assume that no a-priori heuristic knowledge is available and, 
thus, that LRTA * is uninformed. In this case, the u-values of all unvisited states are zero 
and do not need to be maintained explicitly. 

Minimal Lookahead: The lookahead of LRTA * is minimal if the local search space con
tains only the current state. LRTA * with minimallookahead performs almost no planning 
between plan executions. Its behavior in initially known and unknown environments is 
identical. Figure 3 shows an example. 

Let gd(s) denote the goal distance of state s. Then, according to one of our previous results, 
uninformed LRTA * with any lookahead reaches a goal state after at most L 8 E s gd ( s) action 

executions [Koenig and Simmons, 1995]. Since L8ES gd(s) ~ L7:o1 i = 1/2n2 - 1/2n, 
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goal 

-~ 
o = visited vertex (known not to be a goal vertex) 

o = unvisited (but known) vertex (unknown whether ft is a goal vertex) 

• = current vertex 0' the robot 

0 3 = u·value of the vertex 

= edge trav~sed in at least one direction 

= untraversed edge 

_ = local search space 

LATA" with minimallookahead: 

LATA" with maximallookahead: 

~ 
~o 

o 

start 

Figure 3: Example 

t 
all edge lengths ara one goal 

Figure 4: A Planar Undirected Graph 
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uninformed LRTA* with any lookahead reaches a goal state after O(n2 ) action executions. 

This upper bound on the plan-execution time is tight in the worst case for uninformed 
LRTA * with rninimallookahead, even if the number of actions that can be executed in any 
state is bounded from above by a small constant (here: three) . Figure 4, for example, shows 
a rectangular grid-world for which uninformed LRTA * with rninimallookahead reaches a 
goal state in the worst case only after 8( n 2) action executions. In particular, LRTA * can 
traverse the state sequence that is printed by the following program in pseudo code. The 
scope of the for-statements is shown by indentation. 

for i := n-3 downto n / 2 step 2 
for j : = 1 to i step 2 

print j 
for j : = i+l downto 2 step 2 

print j 
for i := 1 to n-l step 2 

print i 

In this case, LRTA * executes 3n 2/16 - 3/4 actions before it reaches the goal state (for 
n 2: 2 with n mod 4 = 2). For example, for n = 10, it traverses the state sequence 8), 83, 

85,87,88,86,84,82,8),83,85,86,84,82,81,83,85,87, and 89 . 

Maximal Lookahead: As we increase the lookahead of LRTA *, we expect that its plan
execution time tends to decrease because LRTA * uses more information to decide which 
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branches of 
length 3 

/~ 

LRTA* is now here 

o = visited vertex 

o = unvisited vertex 

the order in which the remaining 
unvisited vertices are visited 

t 
start 

= edge traversed in at least one direction 

= untraversed edge 

Figure 5: Another Planar Undirected Graph (m = 3) 
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action to execute next. This makes it interesting to study LRTA * with maximallookahead. 

The lookahead of LRTA * is maximal in known environments if the local search space 
contains all non-goal states. In this case, LRTA * performs a complete search without 
interleaving planning and plan execution and follows a shortest path from the start state to 
a closest goal state. Thus, it needs gd( Sst art ) action executions. No other method can do 
better than that. 

The maximallookahead ofLRTA * is necessarily smaller in initially unknown environments 
than in known environments because its value-update step can only search the known part of 
the environment. Therefore, the look ahead of LRTA * is maximal in unknown environments 
if the local search space contains all visited non-goal states. Figure 3 shows an example. 

Uninformed LRTA * with maximal lookahead always moves on a shortest path to the 
closest unvisited state, that is, to the closest potential goal state. This appears to be a 
good exploration heuristic. [Pemberton and Korf, 1992] call this behavior "incremental 
best-first search," but were not able to prove or disprove whether this locally optimal 
search strategy is also globally optimal. Since this exploration heuristic has been used 
on real mobile robots [Thrun et al., 1998], we study how well its plan-execution time 
compares to the plan-execution time of other uninformed exploration methods. We show 
that the worst-case plan-execution time of uninformed LRTA * with maximallookahead in 
unknown environments is Q( IO~~; n n) action executions and thus grows faster than linearly 
in the number of states n. It follows that the plan-execution time of LRTA * is not optimal 
in the worst case, since depth-first search needs a number of action executions in the worst 
case that grows only linearly in the number of states. 

Consider the graph shown in Figure 5, that is a variation of a graph in [Koenig and Smirnov, 
19961. It consists of a stem with several branches. Each branch consists of two parallel 
paths of the same length that connect the stem to a single edge. The length of the branch is 
the length of each of the two paths. The stem has length mm for some integer m ;:::: 3 and 
consists of the vertices Vo, VI , .. . , Vmm . For each integer i with 1 ::; i ::; m there are mm-i 

branches of length :L~~~ m j each (including branches of length zero). These branches 
attach to the stem at the vertices Vj m' for integers j; if i is even, then 0::; j ::; mm-i - 1, 
otherwise 1 ::; j ::; mm-i. There is one additional single edge that attaches to vertex Vo . 
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Vm m is the starting vertex. The vertex at the end of the single edge of the longest branch is 
the goal vertex. Notice that the graph is planar. This is a desirable property since non-planar 
graphs are, in general, rather unrealistic models of maps. 

Uninformed LRTA * with maximallookahead can traverse the stem repeatedly forward and 
backward, and the resulting plan-execution time is large compared to the number of vertices 
that are necessary to mislead LRTA * into this behavior. In particular, LRTA * can behave 
as follows: It starts at vertex Vmm and traverses the whole stem and all branches, excluding 
the single edges at their end, and finally traverses the additional edge attached to vertex 
vo, as shown in Figure 5. At this point, LRTA* knows all vertices. It then traverses the 
whole stem, visiting the vertices at the ends of the single edges of the branches of length O. 
It then switches directions and travels along the whole stem in the opposite direction, this 
time visiting the vertices at the end of the single edges of the branches of length m, and so 
forth, switching directions repeatedly. It succeeds when it finally uses the longest branch 
and discovers the goal vertex. To summarize, the vertices at the ends of the branches are 
tried out in the order indicated in Figure 5. The total number of edge traversals is.o.( mm+l ) 
since the stem of length mm is traversed m + 1 times. To be precise, the total number of 
edge traversal~ is (mm+3 +3mm+2_8mm+1 +2m2 -m+3)/(m2-2m+ 1). It holds that 
n = 8(mm) smcen = (3mm+2_5mm+l_mm+mm-l +2m2-2m+2)/(m2-2m+l) . 

This implies that m = .0.( IO~~; n) since it holds that, for k > 1 and all sufficiently large m 
(to be precise: m with m ~ k) 

10Ik m+IOlk logk m 
mlOlk m 

1 1 
.1.+ logk logk m < I":Ui+o = m. 
m mlogk m - m 

Put together, it follows that the total number of edge traversals is .o.(mm+!) = .o.(m n) = 
.0.( IO:~; n n). (We also performed a simulation that confirmed our theoretical results.) 

The graph from Figure 5 can be modified to cause LRTA * to behave similarly even if the 
assumptions of the capabilities of the robot or the environment vary from our assumptions 
here, including the case where the robot can observe only the actions that lead to unvisited 
states but not the states themselves. 

4 Future Work 

Our example provided a lower bound on the plan-execution time of uninformed LRTA * 
with maximallookahead in unknown environments. The lower bound is barely super-linear 
in the number of states. A tight bound is currently unknown, although upper bounds are 
known. A trivial upper bound, for example, is O(n2) since LRTA* executes at most n - 1 
actions before it visits another state that it has not visited before and there are only n states 
to visit. A tighter upper bound follows directly from [Koenig and Smirnov, 19961. It was 
surprisingly difficult to construct our example. It is currently unknown, and therefore a 
topic of future research, for which classes of graphs the worst-case plan-execution time of 
LRTA * is optimal up to a constant factor and whether these classes of graphs correspond to 
interesting and realistic environments. It is also currently unknown how the bounds change 
as LRTA * becomes more informed about where the goal states are. 

5 Conclusions 

Our work provides a first analysis of uninformed LRTA * in unknown environments. We 
studied versions of LRTA * with minimal and maximal lookaheads and showed that their 
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worst-case plan-execution time is not optimal, not even up to a constant factor. The worst
case plan-execution time of depth-first search, for example, is smaller than that of LRTA * 
with either minimal or maximallookahead. This is not to say that one should always prefer 
depth-first search over LRTA * since, for example, LRTA * can use heuristic knowledge to 
direct its search towards the goal states. LRTA * can also be interrupted at any location and 
get restarted at a different location. If the batteries of the robot need to get recharged during 
exploration, for instance, LRTA * can be interrupted and later get restarted at the charging 
station. While depth-first search could be modified to have these properties as well, it would 
lose some of its simplicity. 
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